Heads we both win, tails only you lose: the effect of limited liability on risk-taking in financial decision making *

Steffen Ahrens†
Ciril Bosch-Rosa‡

August 21, 2018

Abstract

One of the reasons for the recent crisis is that financial institutions took “too much risk” (Brunnermeier, 2009; Taylor et al., 2010). Why were these institutions taking so much risk is an open question. A recent strand in the literature points towards the “cognitive dissonance” of investors, who, because of the limited liability of their investments, had a distorted view of riskiness (e.g., Barberis (2013); Bénabou (2015)). In a series of laboratory experiments we show how limited liability does not affect the beliefs of investors, but does increase their willing exposure to risk. This results points to a simple explanation for the over-investment of banks and hedge-funds: When incentives are not aligned, investors take advantage of the moral hazard opportunities.

Keywords Moral Hazard · Cognitive Dissonance · Behavioral Finance

JEL Classification C91 · D84 · G11 · G41

*Corresponding author: cirilbosch@gmail.com. The authors would like to thank Dirk Engelmann, Jana Friedrichsen, Daniel Gietl, Anna Gumpert, Frank Heinemann, Peiran Jiao, Shyam Sunder, and Roel van Veldhuizen for their useful comments. We also thank Juan Dominguez Morán for the programming of experimental software and the testing support. Additionally, the authors acknowledge financial support from the Deutsche Forschungsgemeinschaft (DFG) though the CRC TRR 190 “Rationality and Competition.” All remaining errors are ours.

†Technische Universität Berlin
‡Technische Universität Berlin and Colegio Universitario de Estudios Financieros
1 Introduction

Excessive risk-taking increases the vulnerability of financial markets (Edwards and Mishkin, 1995; Goodhart et al., 2006), an example being the recent financial crisis in which financial institutions took “too much risk” (Brunnermeier, 2009; Taylor et al., 2010). A common explanation for this excessive risk-taking is the limited liability of financial institutions (Acharya et al., 2010), as investors try to exploit the moral hazard situation this creates (Jensen and Meckling, 1976; Gropp et al., 2013). However, a recent trend in the literature suggests that limited liability might work through a different channel where investors systematically underestimate the risk of their investments due to “cognitive dissonance”\(^1\) (Barberis, 2013; Bénabou, 2015). The argument in this case is that, in a situation of moral hazard, investors might inadvertently bias downwards the risk perception of their investments in order to justify to themselves any excessive risk-taking.\(^2\)

In this paper, we test whether this hypothesis is true in the lab by comparing the risk assessment that experimental subjects make under full and under limited liability. In control rounds, subjects evaluate different assets and then decide how much of their endowment to invest with full liability. In treatment rounds, subjects are divided into bankers and clients. Bankers assess the riskiness of the different assets and decide how much of the clients’ endowment to invest. If the investment results in gains, then the profits are split between banker and client. If, instead, there are losses, then the client absorbs all of them.

Such a treatment allows us to isolate any change in beliefs that might come from the introduction of limited liability in an otherwise identical setup. Our results are clear: subjects hold identical risk perceptions under full and limited liability, but significantly increase the level of risk that they are willing to take when liability is limited. The experiment shows the absence of “cognitive dissonance” among investors and, thus, calls

\(^1\)Cognitive dissonance is the psychological discomfort that arises when one cannot rationalize two conflicting views or actions (e.g., smoking while knowing that it is unhealthy). A common way to deal with this tension is to modify the beliefs one holds on the matter (Festinger, 1962). Studies on this phenomenon are numerous and range from workers adjusting their beliefs on the riskiness of their job (Akerlof and Dickens, 1982) to smokers believing that smoking is not that harmful (McMaster and Lee, 1991), or investors staying in low performance funds due to their overly optimistic perceptions of past fund performance Goetzmann and Peles (1997).

\(^2\)This phenomena holds a strong resemblance to what Bénabou et al. (2018) call “absolving narratives.” We believe that the “unconscious” downward bias of risk perception we study is the fundamental building block around which “absolving narratives” are constructed.
for a critical scrutiny of the presence and impact of cognitive dissonance, as well as other similar biases like wishful thinking or overprecision in financial markets.

This paper is part of a recent trend in behavioral finance experiments which aims to understand how investors form beliefs and make decisions in financial markets (Nosić and Weber, 2010; Bosch-Rosa et al., 2018; Weber et al., forthcoming). More precisely, we are part of the literature that investigates cognitive biases in financial environments. Some previous work in this area that is close to our research are Chang et al. (2016) or Mayraz (2017). While the first investigates the effects of delegation on the disposition effect, the second studies the effects of “wishful thinking” on investors. Our contribution is to analyze whether limited liability affects the beliefs of investors, and consequently their actions. This is relevant as A) it contributes to the growing literature on “motivated beliefs” (Bénabou and Tirole, 2011, 2016; Bénabou, 2015; Gino et al., 2016) by shedding light on the effects that incentives have on the beliefs and actions of investors in a principal-agent setting, B) it clarifies the channels through which limited liability induces excessive risk-taking by financial investors, and C) it adds to the discussion around risk-taking on behalf of others, where results are mixed.³

2 Experimental Design

The core of our experiment is divided into two blocks of three rounds. In each round we present subjects with a graph showing the daily prices of a stock from the DAX30⁴ for eleven consecutive years (see Figure 4 in Appendix A for the six graphs presented). Subjects know that the data comes from the DAX30, but are not told the exact years of the data nor the name of the company. Additionally, they are told that all time-series have been shifted such that the price at the beginning of the 12th year is always € 100. Additionally, they know that they will not get any feedback until the end of the experiment, and that the specific instructions for each block will be read immediately before it starts.

³While, for instance, Chakravarty et al. (2011) and Agranov et al. (2014) provide evidence for higher risk-taking on behalf of others, Eriksen and Kvaløy (2010) and Pahlke et al. (2012) find the opposite. Our results provide support to the first group.

⁴Germany’s prime blue chip stock market index.
In each round, after seeing an animation representing the evolution of prices for the anonymous stock, subjects are presented with the Assessment Screen (see left panel of Figure 1). In this screen they are asked to assess the probability that the price of the stock will be below €100 by the beginning of the 14th year (i.e., the likelihood of a loss), and to guess the price of the stock at that point. Once this is done they move to the Investment Screen.

In the Investment Screen (see right panel of Figure 1) subjects are endowed with €10 and asked to invest as much as they want of this endowment into the stock they just assessed. The return (\(\Pi_i\)) to the investment (\(I_i\)) of subject \(i\) will be the difference between the price at the beginning of the 12th year (€100) and the price at the beginning of the 14th year (\(price_{t=14}\)). Any amount that the subject does not invest in the stock is assumed to go into a risk-free asset with no returns. This leaves the payoff for the investment phase as:

\[
\Pi_i = I_i \times \frac{price_{t=14}}{100} + \varepsilon10 - I_i. \tag{1}
\]

After making their investment decisions subjects immediately move to the next round where they are presented with a new Assessment Screen containing a different graph to assess. This process is repeated three times, after which the instructions for the second block of three rounds are read aloud. In each session one of the blocks is a Control block and the other is a Treatment Block. Sessions 1 to 4 start with the Control block while sessions 5 and 6 start with the Treatment block.

The difference between the Treatment and Control blocks is that before the start of Treatment blocks half of our subjects are assigned the role of “Bankers” while the other half are “Clients.” Subjects are aware of their specific type before the block starts, and they know they will keep the type for the whole block. The structure and tasks in Treatment blocks are identical to those of Control, except for the investment part. In this part, Bankers will be making investment decisions (\(I^B_i\)) not over their endowment, but over the endowment of clients (\(j\)). So while both get €10 in each round, Bankers are assumed to invest their whole endowment in the risk-free asset, while deciding how much to invest of client \(j\)’s endowment. If the investment is profitable (i.e., \(price_{t=14} \geq 100\)), then the Banker and Client split the gains. On the other hand, if the investment turns unsuccessful.

\(^5\)Notice that subjects are endowed for each stock with €10. So the investment decisions are always independent.
out sour (i.e., \(p_{\text{t}=14} < 100\)), then the Client absorbs the whole loss.\(^6\) Therefore, the payoff for Banker \(i\) in Treatment rounds is:

\[
\Pi_i^B = \begin{cases}
 \left(\frac{I_B^* \cdot p_{\text{t}=14}}{100} - I_i^B \right) \cdot 0.5 + €10, & \text{if } p_{\text{t}=14} \geq 100 \\
 €10, & \text{if } p_{\text{t}=14} < 100
\end{cases}
\]

(2)

Analogously, the payoffs for Client \(j\), who is paired with Banker \(i\), are:

\[
\Pi_j^i = \begin{cases}
 \left(\frac{I_B^* \cdot p_{\text{t}=14}}{100} - I_i^B \right) \cdot 0.5 + €10, & \text{if } p_{\text{t}=14} \geq 100 \\
 I_i^B \cdot \frac{p_{\text{t}=14}}{100} + €10 - I_i^B, & \text{if } p_{\text{t}=14} < 100
\end{cases}
\]

(3)

The payoff structure and investment opportunities in our experiment seem well suited to study the effects of cognitive dissonance in financial markets. To see this, consider the example used by Barberis (2013) of traders on the mortgage desk of banks: because subprime products were usually complex, there was scope for traders to manipulate their beliefs (as a self-justification for excessive risk-taking), as it would be hard to argue against any assessment they had made.\(^7\) Similarly, the ambiguity of the products offered to Bankers in our experiment lends itself particularly well to belief manipulation, allowing us to study the effects of limited liability on the risk assessment of Bankers.

2.1 Details on payoffs

In total, across both blocks, we elicit six times the probability that the stock will suffer a loss, the expected price, and the investment decision for each subject. To incentivize the choices in the Assessment Screen we used the binarized scoring rule (Hossain and Okui, 2019).

\(^6\)We acknowledge that incurring in losses might have a reputational cost for bankers. Yet, for the sake of simplicity, and to make moral hazard most salient, we decided that bankers incur a zero cost in case of a failed investment.

\(^7\)To be precise, Barberis (2013) writes “How can we use cognitive dissonance to formalize the story I told above? If a trader on the mortgage desk of a bank begins to sense that the holdings of subprime securities he is building up may pose serious risks to his institution and to the broader financial system, this will threaten his positive self-image [...] To remove the dissonance, he could resign his position – but that would be financially costly. Instead, he manipulates his beliefs, telling himself that his business model is not that risky. For example, he might stop himself from inspecting the quality of the subprime loans he is working with too closely, lest he stumble on some disturbing information. [...] It is worth noting that, for at least two reasons, subprime securitization may have lent itself particularly well to belief manipulation. The first reason is that subprime-linked products were often complex. Given their intricacies, it would have taken considerable effort to disprove the claim that they were relatively safe. This may have made it easier for people to delude themselves about their risks.”
Figure 1: Screen for the belief elicitation phase. Subjects are asked for the probability that the price of this stock will be below 100 at the beginning of the fourteenth year, and for an exact estimate of this price. Notice that the graph presented in this screen is one of the randomly generated graphs used during practice rounds. For more details on practice rounds see the instructions in Appendix D.

2.2 Personality Traits

Finally, subjects take part in a third block in which we elicit their personality traits. This block includes tests for risk, ambiguity, and loss aversion through a modification of the multiple price lists used in Rubin et al. (2017). Additionally, to measure their cognitive ability, subjects answer the CRT (Frederick, 2005), CRT2 (Thomson and Oppenheimer, 2016) and eCRT (Toplak et al., 2014) questions. Subjects also answer the short version of 2013), an incentive compatible scoring rule robust to any risk preferences subjects might have. Additionally, to avoid any hedging, subjects were paid for only one of their six choices for the loss assessments, price predictions, and investment (be it in the Control or Treatment block). The payoff relevant decisions were randomly and independently chosen by the computer, so a subject might get paid for her price prediction in round three, her investment in round four, and the accuracy of the assessed loss likelihood in round six. This payoff structure makes the moral hazard effect even more salient since the (unique) payoff for the investment decision was equally likely to come from the Control or Treatment block.
the Big Five personality traits suggested by Rammstedt and John (2007), as well as the three questions on financial literacy that we borrow from Lusardi and Mitchell (2011). At the end of the block they are asked to state their gender, field of study, and age.

3 Results

A total of 130 subjects were recruited through ORSEE (Greiner, 2004). All sessions lasted two hours and were run at the Experimental Economics Laboratory of the Technische Universität Berlin. Subjects made on average 23.04€, and the experiment was programmed and conducted using O-Tree (Chen et al., 2016).

We ran three types of sessions: Type 1 sessions ran first the Control Block presenting subjects with graphs 1-3 and then the Treatment Block using graphs 4-6. Type 2 sessions started with the Treatment block using graphs 4-6 and followed by the Control Block using graphs 1-3. This allows us to control for the ordering effects of each block. Type 3 sessions, on the other hand, have the same ordering as Type 1 sessions (Control then Treatment), but with inverted graph order, so in Control subjects are presented with graphs 4-6 and in Treatment graphs 1-3.

Table 1 presents the median value across all subjects for the expected probability of a loss (ProbLoss), the expected price (PriceExp), and the share of the endowment invested in the stock (Investment). The table is divided by types of session (rows) and graph (columns). Note that across all three session types Control always has twice as many observations as Treatment does. This is because we use only the data of Bankers in Treatment blocks (65 observations) while for Control blocks we use the data of all participants (130 observations).

It is clear from Table 1 that beliefs and investment decisions differ substantially across graphs. These difference are (in most cases) statistically significant (see Table 3 in Appendix B for pairwise comparisons), and go in the direction one would expect from looking at the graphs. Additionally, there is a clear correlation between the expected price and the probability of losses, the more likely a loss is, the lower the expected price. These two results lead us to believe that our graphical interface is understood by our subjects, and that their beliefs respond to the graphs we present them.

8For example, Graph 1, with a clear upward trend, is approximately half as likely to have losses than Graph 2, which has a less clear upward trend.
Table 1

The upper part of the table shows the median values of loss probability, price expectation, and investment for each of the six graphs in each of the three session types. For Treatment cases only the data of Bankers is taken into consideration. The bottom part of the table shows the p-values resulting from Wilcoxon rank-sum tests comparing Treatment and Control decisions.

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Graph 1</td>
<td>Graph 2</td>
</tr>
<tr>
<td>Session type 1:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ProbLoss</td>
<td>30.0</td>
<td>60.0</td>
</tr>
<tr>
<td>PriceExp</td>
<td>120.0</td>
<td>90.0</td>
</tr>
<tr>
<td>Investment</td>
<td>40.0</td>
<td>12.5</td>
</tr>
<tr>
<td>Session type 2:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ProbLoss</td>
<td>37.0</td>
<td>60.0</td>
</tr>
<tr>
<td>PriceExp</td>
<td>120.0</td>
<td>85.0</td>
</tr>
<tr>
<td>Investment</td>
<td>50.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Session type 3:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ProbLoss</td>
<td>30.0</td>
<td>53.5</td>
</tr>
<tr>
<td>PriceExp</td>
<td>120.0</td>
<td>90.0</td>
</tr>
<tr>
<td>Investment</td>
<td>80.0</td>
<td>40.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Graph 1</th>
<th>Graph 2</th>
<th>Graph 3</th>
<th>Graph 4</th>
<th>Graph 5</th>
<th>Graph 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilcoxon rank-sum tests:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prob Loss</td>
<td>0.727</td>
<td>0.374</td>
<td>0.371</td>
<td>0.669</td>
<td>0.304</td>
<td>0.335</td>
</tr>
<tr>
<td>Price Exp</td>
<td>0.417</td>
<td>0.786</td>
<td>0.797</td>
<td>0.420</td>
<td>0.762</td>
<td>0.316</td>
</tr>
<tr>
<td>Investment</td>
<td>0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Table 1: The upper part of the table shows the median values of loss probability, price expectation, and investment for each of the six graphs in each of the three session types. For Treatment cases only the data of Bankers is taken into consideration. The bottom part of the table shows the p-values resulting from Wilcoxon rank-sum tests comparing Treatment and Control decisions.
Figure 2: In the vertical axis we plot the subjects' stated loss probabilities (left panel) and price expectations (right panel). In the horizontal axis we separate by graph. The bars represent the average belief, the black error bar represents the standard error. Each dot is an individual belief. Light-shaded columns collect beliefs of all subjects in Control blocks, dark-shaded columns collect beliefs of Bankers only in Treatment blocks.

The second thing to notice from Table 1 it that there seem to be no ordering effects, as the differences in beliefs and investment between Type 1 sessions and Type 2 sessions appear to be negligible. We confirm this by using pairwise Wilcoxon rank-sum tests to compare beliefs and investments for the same graph across session types (see Table 4 in Appendix B). Consequently, we pool the data for sessions Type 1 and 2 for the analysis.

3.1 The Effects of Limited Liability on Beliefs and Investment Behavior

The left (right) panel of Figure 2 presents the probabilities that subjects assign to a loss (expected price) for each of the six graphs presented to subjects. The light-shaded columns are the elicited beliefs of all subjects in Control, while the dark-shaded columns only include the beliefs of Bankers in Treatment. It is clear from the figure that limited liability seems to have no effect on the belief of subjects. This is confirmed through a series of Wilcoxon rank-sum tests comparing the beliefs of subjects between Treatment and Control (see results at the bottom part of Table 1). Because the informational content of null results is often unclear, in Appendix C we follow Buser et al. (2017) and study the
impact of our observed results on the probability that the null is true. The outcome lends credibility to our results, as for different priors and alternative hypotheses, our observed outcomes largely increase the probability that the null hypothesis is true, practically discarding any Type II errors. Therefore we state:

Result 1: Limited liability has no effect on the beliefs of subjects.

Analogous to the previous figure, Figure 3 presents the investment decisions of all subjects in Control (light-shaded bar) and Bankers in Treatment (dark-shaded bar) for each of the six graphs. It is clear that, in this case, limited liability has a strong effect: for the same graph, subjects in Treatment blocks invest substantially more than subjects in Control blocks. This is confirmed by a series of Wilcoxon rank-sum tests comparing the investment in Treatment and Control. The results can be found in the last row of Table 1. Therefore we state:
Result 2: Limited liability significantly increases the amount invested by subjects.

3.2 Regression Analysis

To quantify the effects of limited liability on beliefs and investment behavior, we run a series of linear models where the dependent variable is either (1) the probability that subjects assign to a loss, (2) the expected stock price, or (3) the investment share in the stock (see Table 2). Our main explanatory variable is “Treatment” which takes value unity if the observation is from a Banker in a Treatment round, or zero if it comes from a Control round. Additionally, we control for gender, graph, graph and treatment order, risk/ambiguity/loss aversion, cognitive ability, and various other personality traits, and cluster all standard errors at the subject level.

Columns [1] and [2] have as dependent variable the expected probability of a loss, and the expected price at $t = 14$ respectively. In both cases, while the treatment variable has the sign we would expect, it is never statistically significant. This result confirms what we observed using non-parametric tests in section 3.1: Limited liability has no effect on the subjects’ stated beliefs.

On the other hand, when investment is the dependent variable (columns [3] and [4]), Treatment is positive and highly significant. Again, these results are in line with what we observed in section 3.1: When investors are not accountable for their losses they invest larger amounts than when they are fully responsible for their actions. All results are robust to the introduction of personality and individual trait controls, suggesting a strong effect of moral hazard on the decision-making of investors.

Finally, column [4] shows that a higher expected loss probability leads to a reduction in investment for any given stock. This result is robust to the inclusion of the Treatment variable, implying that, even under limited liability, subjects condition their investments on expected returns. This result is foreshadowed in Figures 2 and 3 where expected probability of a loss and invested money move in opposite directions for both Treatment and Control.
<table>
<thead>
<tr>
<th></th>
<th>[1]</th>
<th>[2]</th>
<th>[3]</th>
<th>[4]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ProbLoss</td>
<td>ExpPrice</td>
<td>Investment</td>
<td>Investment</td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>-1.099</td>
<td>1.173</td>
<td>33.20***</td>
<td>32.49***</td>
</tr>
<tr>
<td>Gender</td>
<td>-0.344</td>
<td>0.976</td>
<td>-0.338</td>
<td>-0.558</td>
</tr>
<tr>
<td>Order Graphs</td>
<td>-3.408</td>
<td>2.119</td>
<td>10.59*</td>
<td>8.412</td>
</tr>
<tr>
<td>Order Treatment</td>
<td>2.462</td>
<td>-1.178</td>
<td>5.413</td>
<td>6.987</td>
</tr>
<tr>
<td>Ambiguity Aversion</td>
<td>-0.676**</td>
<td>0.317</td>
<td>0.790</td>
<td>0.358</td>
</tr>
<tr>
<td>Risk Aversion</td>
<td>0.182</td>
<td>0.115</td>
<td>0.915</td>
<td>1.031</td>
</tr>
<tr>
<td>Loss Aversion</td>
<td>-0.0353</td>
<td>-0.251</td>
<td>1.710</td>
<td>1.688*</td>
</tr>
<tr>
<td>Correct CRT</td>
<td>-1.110**</td>
<td>0.361</td>
<td>1.237</td>
<td>0.527</td>
</tr>
<tr>
<td>Extraversion</td>
<td>-1.372*</td>
<td>0.208</td>
<td>0.0423</td>
<td>-0.835</td>
</tr>
<tr>
<td>Agreeable</td>
<td>0.497</td>
<td>-0.722</td>
<td>1.230</td>
<td>1.548</td>
</tr>
<tr>
<td>Conscientious</td>
<td>0.231</td>
<td>-0.308</td>
<td>-0.317</td>
<td>-0.169</td>
</tr>
<tr>
<td>Neurotic</td>
<td>0.0646</td>
<td>0.226</td>
<td>0.159</td>
<td>0.200</td>
</tr>
<tr>
<td>Open</td>
<td>0.972**</td>
<td>-0.609</td>
<td>-1.161</td>
<td>-0.539</td>
</tr>
<tr>
<td>ProbLoss</td>
<td>43.96***</td>
<td>117.9***</td>
<td>-0.401</td>
<td>27.71</td>
</tr>
<tr>
<td>Constant</td>
<td>(9.784)</td>
<td>(11.11)</td>
<td>(25.92)</td>
<td>(24.24)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>[1]</th>
<th>[2]</th>
<th>[3]</th>
<th>[4]</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>585</td>
<td>585</td>
<td>585</td>
<td>585</td>
</tr>
<tr>
<td>Graph Joint Significance p-value</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>adj. R^2</td>
<td>0.142</td>
<td>0.147</td>
<td>0.289</td>
<td>0.414</td>
</tr>
</tbody>
</table>

Standard errors in parentheses

* $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$

Table 2: Three linear models and four specifications. The first two columns study the effect of limited liability on the probability of the stock having a loss, and expected prices respectively. The third and fourth columns study the effect of limited liability on investment decisions.
4 Conclusion

Cognitive dissonance is the psychological discomfort that arises when one cannot rationalize two conflicting views or actions. A common way to deal with this tension is by modifying the beliefs one holds on the matter (Festinger, 1962). A recent strand in the behavioral finance literature argues that this might be a new channel through which limited liability affects the behavior of financial investors. Because they need to justify to themselves their excessive risk-taking, financial investors might (inadvertently) bias downwards their risk perception (Barberis, 2013; Bénabou, 2015; Bénabou et al., 2018).

In this paper we test whether limited liability has such an effect by comparing the risk assessment of experimental subjects for different investment opportunities both under full and limited liability. The results are straightforward: our subjects hold the same risk perception under full and under limited liability, but are much more prone to invest in the risky assets when they do not respond for any potential losses. This result is robust to gender effects, various personality traits, and differences in cognitive ability. In addition, a post-study-probability analysis (in Appendix C) shows that our results are highly “informative,” in the sense that they are unlikely due to an underpowered test and, thus, practically discarding the possibility of a Type II error.

The absence of cognitive dissonance among investors in our experiment, as well as the observation of a deliberate abuse of moral hazard calls for a more critical scrutiny of the presumed role and impact of cognitive dissonance and other similar psychological biases, like wishful thinking or overprecision, in financial markets.
References

A Additional Figures

Figure 4: The six graphs presented to subjects (from left to right and from top to bottom): (1) Bayerische Motoren Werke AG, 27-Jun-03 – 27-Jun-16; (2) Daimler AG, 20-Jun-03 – 20-Jun-16; (3) Deutsche Telekom AG, 10-Sep-02 – 10-Sep-15; (4) Siemens AG, 05-Jan-04 – 05-Jan-17; (5) Infineon Technologies AG, 08-Jul-03 – 08-Jul-16; (6) Linde AG, 18-Dec-02 – 18-Dec-15. All data are downloaded from Google Finance.

B Additional Tables

<table>
<thead>
<tr>
<th>Session type 1:</th>
<th>1 v 2</th>
<th>1 vs 3</th>
<th>2 vs 3</th>
<th>4 vs 5</th>
<th>4 vs 6</th>
<th>5 vs 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prob Loss</td>
<td>0.0005</td>
<td>0.0442</td>
<td>0.0258</td>
<td>0.5410</td>
<td>0.0753</td>
<td>0.7223</td>
</tr>
<tr>
<td>Price Exp</td>
<td>0.0001</td>
<td>0.1791</td>
<td>0.0024</td>
<td>0.7320</td>
<td>0.4806</td>
<td>0.6666</td>
</tr>
<tr>
<td>Investment</td>
<td>0.0006</td>
<td>0.1272</td>
<td>0.0332</td>
<td>0.3074</td>
<td>0.0187</td>
<td>0.2848</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session type 2:</th>
<th>1 v 2</th>
<th>1 vs 3</th>
<th>2 vs 3</th>
<th>4 vs 5</th>
<th>4 vs 6</th>
<th>5 vs 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prob Loss</td>
<td>0.0000</td>
<td>0.0010</td>
<td>0.0242</td>
<td>0.0053</td>
<td>0.0522</td>
<td>0.8126</td>
</tr>
<tr>
<td>Price Exp</td>
<td>0.0000</td>
<td>0.0161</td>
<td>0.0018</td>
<td>0.0066</td>
<td>0.1503</td>
<td>0.4770</td>
</tr>
<tr>
<td>Investment</td>
<td>0.0000</td>
<td>0.0053</td>
<td>0.0049</td>
<td>0.0881</td>
<td>0.0176</td>
<td>0.2091</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session type 3:</th>
<th>1 v 2</th>
<th>1 vs 3</th>
<th>2 vs 3</th>
<th>4 vs 5</th>
<th>4 vs 6</th>
<th>5 vs 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prob Loss</td>
<td>0.0238</td>
<td>0.1725</td>
<td>0.0425</td>
<td>0.2472</td>
<td>0.0010</td>
<td>0.0748</td>
</tr>
<tr>
<td>Price Exp</td>
<td>0.0009</td>
<td>0.0383</td>
<td>0.0248</td>
<td>0.0223</td>
<td>0.0000</td>
<td>0.2501</td>
</tr>
<tr>
<td>Investment</td>
<td>0.0011</td>
<td>0.2657</td>
<td>0.0082</td>
<td>0.0298</td>
<td>0.0001</td>
<td>0.2200</td>
</tr>
</tbody>
</table>

Table 3: p-values of Wilcoxon signed-rank test for pairwise comparisons of session medians per graph (from Table 1).
Table 4: p-values of Wilcoxon rank sum tests for pairwise comparisons of session medians from session types 1 and 2 per graph (from Table 1).

C Post-Study-Probability

In this section we formally analyze how “informative” our null result is. In other words, if our null result comes from a high-powered test that correctly estimates a zero effect, or if it is the result of an underpowered test, and therefore a Type II error. To do so we follow Buser et al. (2017), who provide a variation of the Post-Study-Probability (henceforth: PSP) introduced in Maniadis et al. (2014).

The PSP is defined as the posterior probability that the null hypothesis (H_0) holds, given a prior probability that the null hypothesis is true ($\pi(H_0)$) and the p-value observed in our statistical tests (p^*). Formally:

$$P(H_0|p \geq p^*) = \frac{P(p \geq p^*|H_0)\pi(H_0)}{P(p \geq p^*|H_0)\pi(H_0) + P(p \geq p^*|H_1)(1 - \pi(H_0))},$$ \hspace{1cm} (4)

where $P(p \geq p^*|H_0)$ and $P(p \geq p^*|H_1)$ are the two mutually exclusive reasons we might observe a null result. That is, respectively, either the effect is truly null or we make a Type II error. An important advantage of the PSP over more traditional power analyses is that it not only uses information on the power of the tests, but also takes into account the observed p-values.\(^9\) This allows us to compute by how much our observed p-value shifts the posterior probability that the null is true. To calculate the PSP we use the results of the Wilcoxon tests in Table 1. For the sake of completeness we present the PSP both for each individual graph and for the aggregate case in Tables 6 and 5, respectively.\(^{10}\)

\(^9\)Notice also that we look for a value above the observed p-value and not the 0.05 threshold. The idea is that for any given power, the higher the observed p-value, the less likely it is that we are observing a false negative.

\(^{10}\)For the aggregate case we pool the p-values weighted by the number of observations each graph has. The result is marginally different from a non-weighted average which would result in a p-value of 0.50 instead of the 0.47 we use.
Table 5: Post-Study-Probabilities for Aggregate Data

For $P(p \geq p^*|H_0)$, we are interested in the probability of observing a one-sided p-value above the one-sided p-value actually observed in the analysis (p^*), given H_0 is true. For the aggregate case, the observed p-value from a two-sided test is 0.47; therefore $p^* = 0.47/2 = 0.235$. Finally, because $P(p \geq p^*|H_0)$ is equal to one minus the one-sided p-value of interest (which is $p^* = 0.235$), it follows that $P(p \geq p^*|H_0) \approx 0.77$.

For $P(p \geq p^*|H_1)$, on the other hand, we are interested in the probability of observing a one-sided p-value above the p-value of interest (0.235), for any given alternative hypothesis H_1. To compute this probability, note that $P(p < p^*|H_1)$ denotes the power of the test using an α of 0.235 instead of (the usual) 0.05. Therefore, $P(p \geq p^*|H_1)$ is simply equal to 1 minus the power of the test.\(^{11}\) We calculate power for three alternative hypothesis, namely an effect size of 5, 10, and 15 percentage points.\(^ {12}\)

The results for the aggregate case are summarized in Table 5. The first two rows report the probability of observing a p-value greater than the one observed for the different alternative hypotheses. Take for example the case where the alternative hypothesis is a shift of 15 percentage points between treatment and control. The probability of observing a p-value larger (or equal) to the one we actually observed is very low (0.003). This means that Type II errors are extremely unlikely and therefore that any null results is most likely a true result for almost any chosen prior probability of H_0 (see column 3 of Table 5).

A very clear example of how informative results are is shown in the first column of

\(^{11}\)We compute this power taking the average number of observations across graphs (65 for control and 32 for treatment).

\(^ {12}\)Note that Buser et al. (2017) pick a values ranging from 10pp to 30 pp. In our case we become more restrictive and analyze smaller differences between the null and alternative hypotheses.
Table 5. In this case we hypothesize that our treatment has an effect of only 5 percentage points, yet, even in the case in which we give H_0 a prior of 0.5 ($\pi(H_0) = 0.5$), our observed results shift the posterior that the null will hold by over 20 percentage points. This result is doubled to almost certainty if we keep the same prior but consider the effect size of our treatment to be of just 10 percentage points.

Table 5 shows that our results are robust; even if we expect small treatment effects and have strong confidence in the effects of the treatment (i.e., priors smaller than $\pi(H_0) = 0.5$) our observed p-values are highly informative. Because of these results, we feel comfortable when concluding that moral hazard, most likely, has no effect on the risk assessment of laboratory subjects. The results are qualitatively identical when we study each graph individually (see Table 6).
<table>
<thead>
<tr>
<th></th>
<th>Graph 1</th>
<th></th>
<th>Graph 2</th>
<th></th>
<th>Graph 3</th>
<th></th>
<th>Graph 4</th>
<th></th>
<th>Graph 5</th>
<th></th>
<th>Graph 6</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(P(p \geq p^*</td>
<td>H_0))</td>
<td>0.636</td>
<td>0.636</td>
<td>0.636</td>
<td>0.813</td>
<td>0.813</td>
<td>0.813</td>
<td>0.636</td>
<td>0.813</td>
<td>0.813</td>
<td>0.636</td>
<td>0.813</td>
</tr>
<tr>
<td>(P(p \geq p^*</td>
<td>H_1))</td>
<td>0.237</td>
<td>0.037</td>
<td>0.002</td>
<td>0.393</td>
<td>0.076</td>
<td>0.005</td>
<td>0.237</td>
<td>0.037</td>
<td>0.002</td>
<td>0.393</td>
<td>0.076</td>
</tr>
<tr>
<td>(\pi(H_0) = 0.9)</td>
<td>0.960</td>
<td>0.994</td>
<td>0.999</td>
<td>0.949</td>
<td>0.990</td>
<td>0.999</td>
<td>0.940</td>
<td>0.980</td>
<td>0.997</td>
<td>0.972</td>
<td>0.998</td>
<td>0.999</td>
</tr>
<tr>
<td>(\pi(H_0) = 0.8)</td>
<td>0.915</td>
<td>0.986</td>
<td>0.999</td>
<td>0.892</td>
<td>0.977</td>
<td>0.999</td>
<td>0.874</td>
<td>0.957</td>
<td>0.993</td>
<td>0.938</td>
<td>0.996</td>
<td>0.999</td>
</tr>
<tr>
<td>(\pi(H_0) = 0.5)</td>
<td>0.729</td>
<td>0.945</td>
<td>0.996</td>
<td>0.674</td>
<td>0.914</td>
<td>0.994</td>
<td>0.635</td>
<td>0.848</td>
<td>0.974</td>
<td>0.791</td>
<td>0.984</td>
<td>0.999</td>
</tr>
<tr>
<td>(\pi(H_0) = 0.2)</td>
<td>0.402</td>
<td>0.810</td>
<td>0.986</td>
<td>0.341</td>
<td>0.727</td>
<td>0.977</td>
<td>0.303</td>
<td>0.582</td>
<td>0.905</td>
<td>0.487</td>
<td>0.938</td>
<td>0.999</td>
</tr>
<tr>
<td>(\pi(H_0) = 0.1)</td>
<td>0.230</td>
<td>0.655</td>
<td>0.970</td>
<td>0.187</td>
<td>0.542</td>
<td>0.950</td>
<td>0.162</td>
<td>0.382</td>
<td>0.809</td>
<td>0.296</td>
<td>0.871</td>
<td>0.998</td>
</tr>
<tr>
<td>(P(p \geq p^*</td>
<td>H_0))</td>
<td>0.815</td>
<td>0.815</td>
<td>0.815</td>
<td>0.666</td>
<td>0.666</td>
<td>0.666</td>
<td>0.815</td>
<td>0.815</td>
<td>0.815</td>
<td>0.666</td>
<td>0.666</td>
</tr>
<tr>
<td>(P(p \geq p^*</td>
<td>H_1))</td>
<td>0.469</td>
<td>0.146</td>
<td>0.021</td>
<td>0.176</td>
<td>0.011</td>
<td>0.000</td>
<td>0.469</td>
<td>0.146</td>
<td>0.021</td>
<td>0.176</td>
<td>0.011</td>
</tr>
<tr>
<td>(\pi(H_0) = 0.9)</td>
<td>0.940</td>
<td>0.980</td>
<td>0.997</td>
<td>0.972</td>
<td>0.998</td>
<td>0.999</td>
<td>0.940</td>
<td>0.980</td>
<td>0.997</td>
<td>0.972</td>
<td>0.998</td>
<td>0.999</td>
</tr>
<tr>
<td>(\pi(H_0) = 0.8)</td>
<td>0.874</td>
<td>0.957</td>
<td>0.993</td>
<td>0.938</td>
<td>0.996</td>
<td>0.999</td>
<td>0.874</td>
<td>0.957</td>
<td>0.993</td>
<td>0.938</td>
<td>0.996</td>
<td>0.999</td>
</tr>
<tr>
<td>(\pi(H_0) = 0.5)</td>
<td>0.635</td>
<td>0.848</td>
<td>0.974</td>
<td>0.791</td>
<td>0.984</td>
<td>0.999</td>
<td>0.635</td>
<td>0.848</td>
<td>0.974</td>
<td>0.791</td>
<td>0.984</td>
<td>0.999</td>
</tr>
<tr>
<td>(\pi(H_0) = 0.2)</td>
<td>0.303</td>
<td>0.582</td>
<td>0.905</td>
<td>0.487</td>
<td>0.938</td>
<td>0.999</td>
<td>0.303</td>
<td>0.582</td>
<td>0.905</td>
<td>0.487</td>
<td>0.938</td>
<td>0.999</td>
</tr>
<tr>
<td>(\pi(H_0) = 0.1)</td>
<td>0.162</td>
<td>0.382</td>
<td>0.809</td>
<td>0.296</td>
<td>0.871</td>
<td>0.998</td>
<td>0.162</td>
<td>0.382</td>
<td>0.809</td>
<td>0.296</td>
<td>0.871</td>
<td>0.998</td>
</tr>
</tbody>
</table>

Table 6: Post-Study-Probabilities for Graph 1 to 6
D Instructions

Welcome to our experiment!

During the experiment it is not permitted to use any electronic devices or to communicate with other participants. Please use only the specific programs and functions provided for this experiment. Please do not write on the instructions. For taking notes, we have provided you with pen and paper. If you have a questions, please raise your hand and we will approach you to answer them quietly. Do not ask questions aloud. If a question is relevant for all participants, we will repeat the question and answer it aloud. If you violate these rules, we will have to expel you from the experiment and the payment.

This experiment will have two blocks. Within each block you will take part in several parts. We will read the instructions for each part immediately before you take part in them.

General Instructions for Block 1:

Block 1 has two parts of 3 rounds each. In all the rounds your tasks will be the same, the only difference will be how the payoffs for these rounds work in each part. We will first read the general instructions for all rounds and then the specific instructions for Part 1. Afterwards you will participate in three practice rounds for Part 1. You will have three minutes for each practice round. A countdown at the top of the screen will show the remaining time per practice round. The countdown is not binding, i.e. you will be able to type your input even after the three minutes have passed. In your own interest, however, we urge you not to exceed the three minutes for the experiment not to prolong unnecessarily. After the practice rounds you will take part in the three paid rounds of Part 1. Once Part 1 is finished we will read the specific instructions for Part 2. See Figure 1 for a summary of Block 1.

Figure 1
Once we are done with Part 2, Block 2 of this experiment will start.

In all rounds of Block 1 you will be presented with two screens. In these screens there is a graph like that of Figure 2. These graphs represent the daily price of a stock for thirteen years. The data comes from the DAX (an index of the 30 major German companies) at an undetermined time. For all the stock prices we will show you we have blurred the data for the last two years, so you will only see eleven years of data. We have also shifted the whole graph such that the last price that you see is always 100. In each round the graph will be different.

Figure 2: SCREEN 1

In Screen 1 your task will be to:

- **Guess 1:** Guess the price of the stock at the beginning of the 14th year. The beginning of the 14th year is indicated by the end of the gray box. (Please choose a value between 0 and 200.)
- **Guess 2:** Guess the probability that the price of the stock is below 100 at the beginning of the 14th year. The beginning of the 14th year is indicated by the end of the gray box. In other words, state the likelihood that there is a loss. (Please choose a value between 0 (impossible that there is a loss) and 100 (certain that there will be a loss).
After you have done this, please press “Confirm Entry” and proceed to Screen 2. We will present you with a screen such as that in Figure 3.

![Figure 3: screen 2](image)

In Screen 2 you will see the same graph as in Screen 1. Now your task will be to:

- **Investment**: We will endow you with 10€. Invest in the depicted stock as much as you want of the 10€. To do so we provide you with a slider with which you can indicate the percent of your 10€ endowment you want to invest in the stock.

These two screens will be repeated for all rounds. Remember, in all three rounds you will see a different graph. We will first read the instructions for Rounds 1 to 3, practice for 3 rounds, and then participate in **Part 1**. Once we are done with **Part 1**, we will continue with **Part 2**.

The payoffs for **Block 1** will be determined by randomly picking one Guess 1, one Guess 2, and one Investment across all six rounds of **Block 1**. This means that it is very unlikely that all three picks come from the same round.

You will be told about your payoffs and the value of the stock at the beginning of the 14th year at the very end of the experiment.

If there are any questions, please raise your hand and we will approach you to answer them. If you do not have any questions, please press “Continue” and we will proceed to read the instructions for the payoffs of **Part 1**.
Instructions for Part 1 of Block 1

As mentioned, Part 1 of Block 1 contains three rounds.

In Screen 1 of each round you have two guesses:

- **Guess 1**: guess the price of the stock at the beginning of the 14th year.
- **Guess 2**: guess the probability that the price of the stock is below 100 at the beginning of the 14th year.

In Screen 2 of each round you have one task:

- **Investment**: invest in the stock as much as you want of the 10€ we endow you with.

Payoffs Screen 1:

Your payoffs for the first two tasks will depend on the accuracy of your answer. The closer your guess is to the true answer, the more likely it is that you get a high payoff.

- **Guess 1**: your payoff will depend on the “error” of your guess. This “error” is the distance between your guess and the true price at the beginning of the 14th year. In each round we will calculate the normalized error squared of your guess by dividing your error by 200 and multiplying the result by itself. This will result in an error squared which value is between 0 and 1.

 The computer will then select a random number between 0 and 1, with every number between 0 and 1 being equally likely. If the error squared is smaller than the random number, then you will get 5€. If on the other hand, your error squared is larger than the random number, then you will get 0€.

 Example: imagine you guess a price of 130€ and the real price is 170€, then your error is of 40€. Dividing it by 200 we get 0.2. Multiplying it by itself, your error squared = 0.04. If the random number picked by the computer is greater than 0.04 then you will get $5, if its lower than 0.04 you will get $0 for this guess.

- **Guess 2**: Again, your payoff will depend on the “error” of your guess. Imagine you guessed that the probability of the stock price being below 100 by the beginning of the 14th year is P. If the price of the stock ends below 100, then your error was the probability you assigned to the stock having a price above 100: This is (100-P). If on the other hand, the price of the stock ends above 100, then your error was the probability you assigned to the price being below 100: this is P. In either case, we will create the normalized error squared by dividing your “error” by 100 and then multiplying it by itself. This will result in an error squared which value is between 0 and 1.

 The computer will then select a random number between 0 and 1, with every number between 0 and 1 being equally likely. If the error squared is smaller than the random number, then you will get 5€. If on the other hand, your error squared is larger than the random number, then you will get 0€.

 Example 1: imagine you guess the price will go down with a probability of 40% and the price does go below 100 at the beginning of the 14th year. Then your error is the probability you assigned to
the price going up (60%). Dividing it by 100, and multiplying it by itself we get an error squared. If the random number selected by the computer is bigger than 0.36 you get 5€, if its lower you get 0€.

Example 2: imagine you guess the price will go down with a probability of 40% and the price does not go below 100 at the beginning of the 14th year. Then you error was the probability you assigned to the price going below 100 (that is 40%). If we divide your error by 100 and multiply it by itself, we get an error squared of 0.16. If the Random Number selected by the computer is bigger than 0.16 you get 5€, if its lower you get 0€.

Note: You may wonder why we have chosen this payment rule. The reason is that under this payment rule it is best for you to indicate exactly the expected probability of a loss and the expected price of the asset at the beginning of the 14th year.

Payoffs Screen 2:

In this screen, in each round, we endow you with 10€ and you must decide how much of these 10€ to invest in the stock. To do so, you are provided with a slider bar below the graph. By moving the slider bar from left to right you increase the percentage of the 10€ you wish to invest in the stock. The values therefore can go from 0 (invest nothing in the stock) to 100 (invest all 10€ in the stock).

Your payoff for this screen will depend on how much of these 10€ you invest on the stock, and the price of the stock at the beginning of the 14th year. Any money that you decide not to invest you get to keep.

Examples:

- if you decide to invest 75% of your 10€ and the price at the beginning of the 14th year is 150 you will get 7,5*(150/100) + 2,50= 13,75€. This is because you invested 7,50€ in the stock which are now worth 11,25€ and you have kept 2,50€.

- if you decide to invest 75% of your 10€ and the price at the beginning of the 14th year is 60 you will get 7,5*(60/100) + 2,50= 7,00€. This is because you invested 7,50€ in the stock which are now worth 4,50€ and you have kept 2,50€.

Summary of Part 1:

This part has three rounds. In each round you will have two screens that show you the same graph representing the evolution of the price of a stock. In Screen 1 you must guess what will be the price of the stock two years into the future, and how likely it is that this price will be below its actual price of 100. In Screen 2 we ask you to decide how much to invest in the stock of the 10€ we endow you with.
You will be not be told about the outcome of your choices until the end of the experiment. Before we start playing Part 1, there will be three unpaid practice rounds. These practice rounds are for you to get acquainted with the interface and to better understand the payoff rules. The data of these practice rounds has been randomly generated and has nothing to do with the data we will show you during Parts 1 and 2. At the end of the practice rounds we will show you the evolution of the price and your hypothetical payoffs.

This is the end of the instructions for Part 1 of Block 1. If you have any questions, please raise your hand and we will approach you to answer them. If you have no questions, then press “Continue” and we will proceed to the practice rounds for Part 1.
Instructions for Part 2 of Block 1

Part 2 of Block 1 is very similar to Part 1. You will participate in three rounds of the same task as in Part 1. The difference is that now half of you will be randomly assigned the role of Bankers, while the other half will be assigned the role of Investors. You will be told if you are a Banker or an Investor at the beginning of Part 2. These roles will be kept for the whole of Part 2, and in each round a Banker will be assigned to an Investor.

In Screen 1 the tasks and payoffs for both Investors and Bankers will be the same as in Part 1. The difference in this Part will be on the payoffs for Screen 2. In it, both the Investor and the Banker are endowed with 10€, but now the Banker will be deciding the percentage to invest of the endowment of the Investor. The Banker cannot invest his endowment, which she/he automatically keeps.

The difference in payoffs comes from the success of the Banker’s investment of the Investor’s endowment. If the investment is successful (the final price of the stock is above 100 at the beginning of the 14th year), then the Banker and the Investor split the profits. On the other hand, if there is a loss (the final price of the stock is below 100 at the beginning of the 14th year), then only the Investor absorbs this loss, and the Banker simply keeps her/his endowment.

Examples:

- **Example 1:** if the Banker decides to invest 60% of the Investor’s 10€ and the price at the beginning of the 14th year is of 180, then the investment will have made a profit of 6€*(180/100) -6€ = 4.80€. Because the Investor and Banker split the profits, then they both get 10€ + (4.80€/2) = 12.40€.

- **Example 2:** if the Banker decides to invest 60% of the Investor’s 10€ and the price at the beginning of the 14th year is of 70, then the investment made a loss of 6€*(70/100) -6€ = -1.80€. In this case the Investor absorbs the loss and gets a payoff of 6€*(70/100) + 4€ = 8.20€, while the Banker gets to keep her/his endowment of 10€.

Important: In Screen 2 we will also ask Investors how much they would like to invest in the stock. This is a hypothetical question with no consequences for the final payoffs.

Summary of Part 2:

Part 2 is very similar to Part 1 as there are three rounds with two screens each. In Screen 1 we ask you to guess the price of a stock and the likelihood that the price will be below 100 two years into the future. The difference is in Screen 2 as now you are randomly divided into Bankers and Investors. Both are endowed with 10€, but Bankers are now investing the money of Investors. If the investment is successful, then the profits are shared evenly between the Banker and the Investor. On the other hand, if there is a loss, then the Banker keeps her/his 10€, while the Investor absorbs the whole loss.

This is the end of the instructions for Part 2 of Block 1. If you have any questions, please raise your hand and we will approach you to answer them. If you have no questions, then press “Continue” and proceed to Part 2 from Block 1.
Instructions for Block 2:

Block 2 has five parts. We will read the instructions for each part immediately before it starts.

Part 1 of Block 2:

In the next part you will be sequentially presented with three tables that contain 15 rows each. In each row, you are given the choice between Option A and B. You need to decide in every row which of the two options you prefer. Only one of the rows from the three tables will determine your earnings for this part. What row is picked for the payoffs will be randomly decided by the computer.

At the top of the screen a countdown will count three minutes down. The countdown is not binding, i.e. you will be able to type your input even after the three minutes have passed. In your own interest, however, we urge you to not exceed the three minutes for the experiment not to prolong unnecessarily.

Please press “Continue” to proceed.
Table 1 presents you with 15 rows in which you must choose between Options A or B. Option A is a lottery with unknown probabilities. The only thing that you know is that the probability of the left or right column occurring adds up to 100% probability. Option B on the other hand pays with certainty a fixed amount which changes for every row.

Example: in row 1 you can choose between Option B which pays 0.50€ with certainty, or Option A which pays you 5€ or 0€ each with unknown probability. All the following rows are the analogous.

You initially start with all rows selecting Option A. Please choose at which row you would like to switch from Option A to B, all rows below the one you select including itself will then switch to Option B. Once you click on the row where you want to change from Option A to B you will be asked whether or not this is your final decision. If you confirm, then you are done with Table 1.

If you have any questions, please raise your hand and we will come to you to answer it. Once you are done with your decisions, please click “Continue”.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Option A</th>
<th>Option B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unbekannte Chance auf 5,00€ & Unbekannte Chance auf 0,00€</td>
<td>0,50€ sicher</td>
</tr>
<tr>
<td>2</td>
<td>Unbekannte Chance auf 5,00€ & Unbekannte Chance auf 0,00€</td>
<td>0,75€ sicher</td>
</tr>
<tr>
<td>3</td>
<td>Unbekannte Chance auf 5,00€ & Unbekannte Chance auf 0,00€</td>
<td>1,00€ sicher</td>
</tr>
<tr>
<td>4</td>
<td>Unbekannte Chance auf 5,00€ & Unbekannte Chance auf 0,00€</td>
<td>1,25€ sicher</td>
</tr>
<tr>
<td>5</td>
<td>Unbekannte Chance auf 5,00€ & Unbekannte Chance auf 0,00€</td>
<td>1,50€ sicher</td>
</tr>
<tr>
<td>6</td>
<td>Unbekannte Chance auf 5,00€ & Unbekannte Chance auf 0,00€</td>
<td>1,75€ sicher</td>
</tr>
<tr>
<td>7</td>
<td>Unbekannte Chance auf 5,00€ & Unbekannte Chance auf 0,00€</td>
<td>2,00€ sicher</td>
</tr>
<tr>
<td>8</td>
<td>Unbekannte Chance auf 5,00€ & Unbekannte Chance auf 0,00€</td>
<td>2,25€ sicher</td>
</tr>
<tr>
<td>9</td>
<td>Unbekannte Chance auf 5,00€ & Unbekannte Chance auf 0,00€</td>
<td>2,50€ sicher</td>
</tr>
<tr>
<td>10</td>
<td>Unbekannte Chance auf 5,00€ & Unbekannte Chance auf 0,00€</td>
<td>2,75€ sicher</td>
</tr>
<tr>
<td>11</td>
<td>Unbekannte Chance auf 5,00€ & Unbekannte Chance auf 0,00€</td>
<td>3,00€ sicher</td>
</tr>
<tr>
<td>12</td>
<td>Unbekannte Chance auf 5,00€ & Unbekannte Chance auf 0,00€</td>
<td>3,25€ sicher</td>
</tr>
<tr>
<td>13</td>
<td>Unbekannte Chance auf 5,00€ & Unbekannte Chance auf 0,00€</td>
<td>3,50€ sicher</td>
</tr>
<tr>
<td>14</td>
<td>Unbekannte Chance auf 5,00€ & Unbekannte Chance auf 0,00€</td>
<td>3,75€ sicher</td>
</tr>
<tr>
<td>15</td>
<td>Unbekannte Chance auf 5,00€ & Unbekannte Chance auf 0,00€</td>
<td>4,00€ sicher</td>
</tr>
</tbody>
</table>

Figure 4
Table 2:

Table 2 presents you with 15 rows in which you must choose between Options A or B. Option A is a lottery with known probabilities: the probability that the left column is selected is 50%, and so is the probability that the right column is chosen. Option B on the other hand pays with certainty a fixed amount which changes for every row.

Example: in Row 1 you can choose between Option B which pays 0.50€ with certainty, or Option A which pays you 5€ with a probability of 50% or 0€ with the same probability. All the following rows are the analogous.

You initially start with all rows selecting by default Option A. Please choose at which row you would like to switch form Option A to B, all rows below the one you select including itself will then switch to Option B. Once you click on the row where you want to change from Option A to B you will be asked whether or not this is your final decision. If you confirm, then you are done with Table 2.

If you have any questions, please raise your hand and we will come to you to answer it. Once you are done with your decisions, please click “Continue”.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Option A</th>
<th>Option B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50% Chance auf 5,00€ & 50% Chance auf 0,00€</td>
<td>0,50€ sicher</td>
</tr>
<tr>
<td>2</td>
<td>50% Chance auf 5,00€ & 50% Chance auf 0,00€</td>
<td>0,75€ sicher</td>
</tr>
<tr>
<td>3</td>
<td>50% Chance auf 5,00€ & 50% Chance auf 0,00€</td>
<td>1,00€ sicher</td>
</tr>
<tr>
<td>4</td>
<td>50% Chance auf 5,00€ & 50% Chance auf 0,00€</td>
<td>1,25€ sicher</td>
</tr>
<tr>
<td>5</td>
<td>50% Chance auf 5,00€ & 50% Chance auf 0,00€</td>
<td>1,50€ sicher</td>
</tr>
<tr>
<td>6</td>
<td>50% Chance auf 5,00€ & 50% Chance auf 0,00€</td>
<td>1,75€ sicher</td>
</tr>
<tr>
<td>7</td>
<td>50% Chance auf 5,00€ & 50% Chance auf 0,00€</td>
<td>2,00€ sicher</td>
</tr>
<tr>
<td>8</td>
<td>50% Chance auf 5,00€ & 50% Chance auf 0,00€</td>
<td>2,25€ sicher</td>
</tr>
<tr>
<td>9</td>
<td>50% Chance auf 5,00€ & 50% Chance auf 0,00€</td>
<td>2,50€ sicher</td>
</tr>
<tr>
<td>10</td>
<td>50% Chance auf 5,00€ & 50% Chance auf 0,00€</td>
<td>2,75€ sicher</td>
</tr>
<tr>
<td>11</td>
<td>50% Chance auf 5,00€ & 50% Chance auf 0,00€</td>
<td>3,00€ sicher</td>
</tr>
<tr>
<td>12</td>
<td>50% Chance auf 5,00€ & 50% Chance auf 0,00€</td>
<td>3,25€ sicher</td>
</tr>
<tr>
<td>13</td>
<td>50% Chance auf 5,00€ & 50% Chance auf 0,00€</td>
<td>3,50€ sicher</td>
</tr>
<tr>
<td>14</td>
<td>50% Chance auf 5,00€ & 50% Chance auf 0,00€</td>
<td>3,75€ sicher</td>
</tr>
<tr>
<td>15</td>
<td>50% Chance auf 5,00€ & 50% Chance auf 0,00€</td>
<td>4,00€ sicher</td>
</tr>
</tbody>
</table>

Figure 5
Table 3:

Table 3 presents you with 15 rows in which you must choose between Options A or B. Option A is a lottery with known probabilities: the probability that the left column is selected is 50%, and so is the probability that the right column is chosen. Option B on the other hand pays with certainty a fixed amount which changes for every row.

Example: in Row 1 you can choose between Option B which pays 0€ with certainty, or Option A which pays you 5€ with a probability of 50% or subtracts -0.50€ from any gains you have in this experiment.

You initially start with all rows selecting by default Option A. Please choose at which row you would like to switch from Option A to B, all rows below the one you select including itself will then switch to Option B. Once you click on the row where you want to change from Option A to B you will be asked whether or not this is your final decision. If you confirm, then you are done with Table 3.

If you have any questions, please raise your hand and we will come to you to answer it. Once you are done with your decisions, please click “Continue”.

This is the last table of Part 1, after we are done with it we will read the instruction for Part 2 of Block 2.
Instructions for Part 2 of Block 2:

In the following three screens you will be presented with multiple problems of varying difficulty. For each screen you have a maximum of 5 minutes to solve the problems. A counter will show the remaining time per screen. Once you have solved all problems on one screen, click “Confirm Entry” and you will be forwarded to the next screen. Try to solve as many problems as possible. For each correct solution you get 0.25€.

Important: On each screen you will find a counter, counting five minutes down. This counter is strictly binding. After five minutes have passed you will not be able to make any more entries. Once you have solved all problems on one screen, click “Confirm Entry”. If you do not click “Confirm Entry” and the time passes, your solutions for this screen will not be saved and thus cannot be paid.

Please press “Continue” to proceed.
Instructions for Part 3 of Block 2:

In this part we will ask you several questions. These will appear in three different Screens. Some of the questions are paid, others aren’t. In each case we will inform you if the question is paid, and if so, how the payoffs are calculated. Only one of the paid questions will count towards the final payoffs. This questions will be randomly selected by the computer, and all questions are equally likely to be selected. Once you have answered all questions on one screen, click “Confirm Entry” to proceed to the next screen.

A countdown at the top of the screen will show the remaining time per practice round. The countdown is not binding, i.e. you will be able to type your input even after the three minutes have passed. In your own interest, however, we urge you not to exceed the three minutes for the experiment not to prolong unnecessarily.

If you have any questions, please raise your hand and we will come to you to answer it. Please press “Continue” to proceed.

Instructions on Screen 1:

Question 1: Please give us an estimate for the total number of questions you answered correctly in the previous part (the problems). (There were 11 questions in total, so your answer should be a number between 0 and 11.)

- Payoff for Question 1: You will get paid based on the accuracy of your answer. The more accurate your answer the more you will get paid. For a correct answer you get 1.50€, otherwise we will subtract 0.25€ for each unit away you are from the true answer. Example 1: if you guess you solved 10 problems correctly, but the true number of correct problems is 8, then you will get a payoff of 1€ (as 1.50€-(10-8)*0.25€=1.00€). Example 2: if you guess you solved 10 problems correctly, but the true number of correct solutions is 11, your payoff will be of 1.25€ (as 1.50€-(11-10)*0.25€=1.25€). The minimum payoff that you can get in this part is 0€.

Question 2: How far away do you think your answer to Question 1 is from the true answer?

- Payoff for Question 2: this question is not paid.

Instructions on Screen 2:

Question 1: Please give us an estimate of the number of participants that in the last part (the problems) solved correctly a smaller number of problems than you. (There are 22 participants in this experiment including yourself, so your answer should be a number between 0 and 21.)

- Payoff for Question 1: You will get paid based on the accuracy of your answer. The more accurate your answer the more you will get paid. For a correct answer you get 1.50€, otherwise we will subtract 0.25€ for every person you are away from the true answer. Example 1: if you guess that 10 participants did worse than you, but the correct number is 7,
then you will get a payoff of 0.75€ (as 1.50€ - (10-7)*0.25€ = 0.75€). Example 2: if you guess that 10 participants did worse than you, but the correct answer is 14, then your payoff will be of 0.50€ (as 1.50€ - (14-10)*0.25€ = 0.50€). The minimum payoff that you can get in this part is 0€.

Question 2: How far away do you think your answer to Question 1 is from the true answer?

- Payoff for Question 2: this question is not paid.

Instructions on Screen 3:

Question 1: Please give us an estimate of the total number of correct answers across all player in **Part 2 of Block 2**. (There are 22 subjects in this laboratory (including yourself), and each answered 11 questions, so your answer should be a number between 0 and 22 x 11 = 242.)

- Payoff for Question 1: You will get paid based on the accuracy of your answer. The more accurate your answer the more you will get paid. For a correct answer you get 1.50€, otherwise we will subtract 0.05€ for each unit away you are from the true answer. **Example 1:** if you guess that 150 problems were solved correctly, but the true number is 130, then you will get paid 0.50€ (as 1.50€ - (150-130)*0.05€ = 0.50€). **Example 2:** if you answer that 220 problems were solved correctly, but the correct answer is 230, then your payoff will be of 1.00€ (as 1.50€ - (230-220)*0.05€ = 1.00€).

Question 2: How far away from the real answer you think you are? (Your answer should be between 0 and 242.)

- Payoff for Question 2: You will also get paid for the precision of Question 2. The more accurate your answer the more you will get paid. For a correct answer you get 1.50€, otherwise we will subtract $0.05 for every unit away from the true distance between your answer to Question 1 and the true answer to Question 1. **Example 1:** if you guessed that you were 40 units away from the true answer to Question 1, but you actually were 60 units away, then your payoff will be 0.50€ (as 1.50€ - 20*0.05€ = 0.50€). **Example 2:** if you guessed that you were 30 units away from the true answer to Question 1, but you actually were 5 units away, then your payoff will be 0.25€ (as 1.50€ - 25*0.05€ = 0.25€).
Instructions for Part 4 of Block 2: (only shown on screen)

In the following screen, you will find ten short descriptions of personality traits. Please indicate for each of these ten descriptions how true they are about you (e.g. “fully disagree” or “fully agree”).

A countdown at the top of the screen will show the remaining time per practice round. The countdown is not binding, i.e. you will be able to type your input even after the three minutes have passed. In your own interest, however, we urge you not to exceed the three minutes for the experiment not to prolong unnecessarily.

Please press “Continue” to proceed.
Instructions for Part 5 of Block 2: (only shown on screen)

This is the last part of the experiment. Please fill in the following questionnaire.