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Abstract

This paper challenges Morris and Shin’s (1998) argument that the outcome of
a speculative attack is uniquely determined by macroeconomic fundamentals.
We generalize Morris and Shin’s model, and the experiment of Heinemann,
Nagel, and Ockenfels (2004), by making decisions sequential and allowing some
previous actions to be observed. We show sufficient conditions that guarantee
the existence of a range of fundamentals where multiple outcomes occur. The
main requirement is simply that most players must observe a sufficiently large
number of previous choices.

In our experimental sessions, eight to twelve players observe signals about
the aggregate state and may also observe a random subset of previous actions.
Our subjects display herding behavior consistent with the unique logit equi-
librium of a boundedly rational version of our game. These strategies imply
a unique mapping between fundamentals and the fraction of players attack-
ing if previous actions are unobserved. But when most previous actions are
observed, they give rise to a “tripartite classification of fundamentals”: there
is a significant middle interval in which all players attacking, and no players
attacking, both occur with more than 1% probability.

JEL classification: C62, C72, C73, C92, E00, F32
Keywords: Multiplicity, herding, global games, logit equilibrium, cur-

rency crises, experiments
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1 Introduction

In an influential paper, Morris and Shin (1998; henceforth MS98) argued that

because of imperfect information, speculation against a fixed exchange rate is

likely to yield a unique outcome for any given state of macroeconomic funda-

mentals, in spite of the strategic complementarities involved in currency spec-

ulation. This paper challenges their conclusion, showing that it relies heavily

on an assumption of exactly simultaneous choice. We show that if most players

observe a sufficient number of previous actions before making their own deci-

sions, then there exists a range of fundamentals over which the outcome of the

speculative attack game is unpredictable.1 In other words, sequential choice

brings back the more traditional “tripartite classification of fundamentals”, as

illustrated in Figure 1, that occurs in models like that of Obstfeld (1996).

Considering how sequential choice alters the predictions of the MS98 model

is natural, since it is well known from the herding literature (e.g. Baner-

jee 1992; Bikhchandani, Hirshleifer, and Welch 1992, 1998; Chamley 2003B;

Chari and Kehoe 2003) that when players can observe previous actions, small

variations in the initial choices can lead to substantially different aggregate

outcomes. This variation in aggregate outcomes arises even within the context

of a single equilibrium. Thus, a number of recent theoretical papers have con-

sidered coordination games where not all choices are simultaneous (Chamley

2003A; Dasgupta 2007; Heidhues and Melissas 2006; Angeletos, Hellwig, and

Pavan 2006; Costain 2007), and in most of these contexts the possibility of

multiple outcomes returns. This occurs in spite of fact that these models in-

clude private information like that which serves to prove uniqueness in MS98,

Carlsson and van Damme (1993), Frankel, Morris, and Pauzner (2003), and

other “global games” papers.

Therefore this paper proposes a laboratory experiment which generalizes

the MS98 game to allow non-simultaneous choice. Up to now, experiments

1It is important to emphasize that the primary focus of this paper is multiplicity of
macroeconomic outcomes conditional on aggregate fundamentals— which we believe is the
relevant issue for policy makers— rather than the related but more theoretical question of
multiplicity of equilibrium.
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Fig. 1a: "Tripartite classification of fundamentals”: 

multiple outcomes possible 
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Fig. 1b: Global games viewpoint: outcome uniquely 

determined by aggregate state 

Figure 1: Two views of speculative attacks

testing the global games framework have given decidedly mixed results. Heine-

mann, Nagel, and Ockenfels (2004; henceforth HNO04) find uniqueness in

laboratory experiments based on MS98, as do Cabrales, Nagel, and Armenter

(2007) for a static game related to Carlsson and VanDamme (1993).2 However,

they find no evidence for the differences between complete and incomplete in-

formation settings that the global games framework implies. Independent from

the information setting, aggregate behavior is fairly predictable and with com-

mon information, subjects coordinate on thresholds somewhere between the

2Other recent experiments on currency or banking crises include Cheung and Friedman
(2005), Cornand (2006), Schotter and Yorulmazer (2003), Shurchkov (2007) and Duffy and
Ochs (2007).
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global-game solution and the payoff-dominant equilibrium.

In contrast, the mechanism underlying herding models has been much more

successfully validated in the laboratory; see Anderson and Holt (1997, 1998),

Kubler and Weizsacker (2004), Drehmann, Oechssler, and Roider (2005), and

Alevy, Haigh, and List (2006). The main experimental failing of the original

theoretical herding papers is that the degree of rationality obtained in the lab-

oratory is lower than the theory papers assumed. Anderson and Holt (1997, p.

848) indicate that “human subjects frequently deviate from rational Bayesian

inferences” and that therefore behavior can be better described by a logistic

error response function. In particular, quantal response equilibria yield a good

fit of data generated by laboratory experiments on herding games. Kubler

and Weizsacker (2004) show that the quality of data fit can be significantly

improved by allowing different error rates for different levels of reasoning. We

build upon these approaches by estimating a logit equilibrium and show that

it provides a significantly better fit of data in a speculative-attack model with

sequential moves than the equilibrium for fully rational behavior.

Our model applies the herding structure of Costain (2007), in which a

random number of previous choices is observed, to a game with is otherwise

identical to that in MS98 and in the experiment of HNO04. Theoretically, we

focus on a well-behaved class of equilibria we call “double monotonic herding

equilibria”, for which we can prove existence numerically, and which closely

match our experimental observations. We prove that if when there are many

rational players, most of whom observe many previous actions, then equilibria

of this type exhibit a “tripartite classification of fundamentals” whenever a

full-information model like Obstfeld (1996) would. That is, for some inter-

mediate values of fundamentals, the aggregate outcome is unpredictable, in

contrast to MS98. Nonetheless, equilibria of this type have well-defined and

intuitive predictions and comparative statics: the probability distribution over

the number of attacking agents is well defined and continuous in the funda-

mentals, and attacks are more likely in bad aggregate states. This feature

distinguishes a rational herding model from a sunspot model, in which proba-

bilities of reaching different equilibria are not well defined. Thereby, we avoid

one of the main weaknesses of Obstfeld (1996) that was criticized by MS98.
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Experimentally, we compare sessions in which previous actions are unob-

served (a setup equivalent to MS98 and HNO04) to sessions in which 50%,

75%, or 100% of previous actions are observed. As our model predicts, the

more previous actions are observed, the more often aggregate outcomes appear

to cluster near the extremes, either with most players attacking, or most not

attacking. To check how this aggregate behavior arises, we estimate our ex-

perimental subjects’ strategies in two ways: first with a flexible reduced form,

and then by structurally estimating a logit equilibrium of our model. The

coefficients of our reduced-form estimates always have the signs implied by a

double monotone herding equilibrium. The structural estimation of the logit

equilibrium also fits the data very closely, and shows that subjects come close

to making fully rational decisions. We then use our both our strategy estimates

to reconstruct the implied probability distribution over aggregate outcomes.

Whenever at least 75% of previous actions are observed, we find a “tripartite

classification of fundamentals” with a significant central interval over which ei-

ther extreme outcome (no players attacking, or all players attacking) can occur

with at least 1% probability. However, the degree of coordination of players’

decisions appears insufficient to generate the sharply bimodal distribution of

aggregate outcomes that the fully rational version of our model implies.

2 The herding model

2.1 Morris and Shin’s game

Our intention here is to construct a game which can be played in the labora-

tory, and which is as close as possible to MS98’s stylized model of speculative

attacks, except that choice is not exactly simultaneous. Let I be the num-

ber of players.3 As in MS98, many traders choose whether or not to attack

a currency peg on the basis of limited information about the true state Θ of

3Costain (2007) analyzes the limiting case I = ∞, which simplifies the structure of
the equilibrium; but here we focus mostly on the finite I case, for compatibility with our
experiments.
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the macroeconomy. If the proportion of traders who choose to attack exceeds

a hurdle function a(Θ), devaluation occurs, resulting in a payoff R(Θ) − t to

the attackers. Otherwise, attackers lose the transactions cost t. Players who

choose not to attack have payoff zero. It is assumed that a′ > 0 and R′ < 0,

so that larger Θ represents a better state of the economy.

Ex ante, the fundamental state Θ has c.d.f. G(Θ), which is a uniform

distribution over the support Ω ≡ [θ, θ]. To make the problem interesting,

we follow MS98 by assuming parameters that would guarantee a “tripartite

classification of fundamentals” if there were full information.

Assumption 1. a. If the state is sufficiently bad, it is worthwhile
to attack: R(θ)/t > 1 and a(θ) < 1/I.

b. If the state is sufficiently good, it is worthwhile not to attack:
R(θ)/t < 1 or a(θ) > 1.

c. The interval Ωm ≡ [θm, θm] ≡ {θ : 1/I < a(θ) < 1 < R(θ)/t}
is nonempty. That is, for any θ in Ωm ⊂ Ω, a full information
game of simultaneous moves would have multiple equilibria.

Under these assumptions, the bounds on the full-information region of multi-

plicity are θm = a−1(1/I) and θm = min{R−1(t), a−1(1)}. However, we instead

assume incomplete information, as in MS98. Before deciding whether or not

to attack, player i receives a signal xi that reveals information about Θ. The

signal xi is i.i.d. across individuals, with a conditional c.d.f. F (xi|Θ) that is

uniform on [Θ− ε, Θ + ε].4

2.2 Sequential choice

In our model and in our experiment, the players i ∈ II ≡ {1, 2, 3, . . . , I} make

their choices in numerical order. Writing actions as ηi ∈ {0, 1}, where 1 means

“attack”, the proportion of attacking so far, up to and including agent i, is:

αi ≡ 1

i

i∑

j=1

ηj ∈ Ji ≡
{
0,

1

i
,
2

i
, . . . , 1

}
(1)

4Numerically and experimentally, we must restrict variables to finite, discrete supports.
Thus we draw Θ from an equally-spaced grid ΓΘ between θ and θ, and draw xi from an
equally spaced grid Γx over [Θ− ε, Θ + ε].
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Success or failure of the attack depends on the overall proportion of attackers

αI ∈ JI . The attack succeeds, and the currency is devalued, if and only if

αI ≥ a(Θ)

Obviously, sequential choice is logically equivalent to simultaneous choice

if preceding choices are unknown. Therefore, the key difference between our

model and that of MS98 is that we allow players to observe some previous

decisions with nonzero probability. For simplicity, person i’s observations are

drawn with equal probability (but without replacement) from her set of prede-

cessors Ii−1 ≡ {1, 2, . . . , i− 1}, so that i is just as likely to observe the choice

of agent 1 as that of agent i− 1 or that of any other preceding player. Player

i can observe up to Nmax
i ≡ min(Nmax, i− 1) predecessors. The probability of

observing ni = n predecessors is assumed binomial:

Ni(n) ≡ prob(ni = n) ≡
(

Nmax
i

n

)
qn(1− q)Nmax

i −n (2)

for some q ∈ [0, 1]. That is, q is the probability that any given preceding player

is observed. The number of observed predecessors who attacked is denoted mi.

Individuals know the total number of players I. However, in our model

they do not necessarily know their position in the sequence, nor do they know

the positions of the predecessors they observe. More precisely, a player places

a uniform prior over her possible positions i ∈ II , and the only clue that helps

her update this assessment is that if she observes n previous choices, then her

position cannot be less than n + 1. Thus, the information set on which she

bases her choice is:

(ni,mi, xi) (3)

Given her information set, the player must try to deduce the aggregate outcome

(Θ, αI) ∈ [θ, θ]× JI . We denote her conditional probability assessment as:

Π(θ, α|n,m, x, η) ≡ prob(Θ ≤ θ, αI ≤ α|n,m, x, η) (4)

Note that the individual’s choice η influences her perceived distribution of the

aggregate outcome αI , except perhaps in the limiting case I = ∞.
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In general, a player’s strategy can be defined by her probability y(n,m, x)

of playing η = 1 conditional any information set (n,m, x). If we impose the

innocuous assumption that players attack when indifferent, then an optimal

strategy must satisfy:

y(n,m, x) = 1 iff EΠ

[
R(Θ)1αI≥a(Θ)|n,m, x, η = 1

]
≥ t

y(n,m, x) = 0 iff otherwise
(5)

Here 1αI≥a(Θ) is an index function taking the value 1 if there is a successful

attack, and 0 otherwise. The expectation is evaluated using the probability

distribution Π, conditional on observing n agents, of whom m attacked, and

observing signal x, and also conditional on playing η = 1.

However, generically, players will strictly prefer 0 or 1 for almost every

(n,m, x). Therefore, we typically expect to find threshold equilibria τ(n,m)

of the following form:

y(n,m, x) = 1 iff x ≤ τ(n,m)
y(n,m, x) = 0 iff x > τ(n,m)

The threshold signal τ(n,m) must satisfy the indifference condition

t = EΠ

[
R(Θ)1αI≥a(Θ)|n,m, τ(n,m), η = 1

]
(6)

Assuming threshold strategies will be helpful for some of our analytical results,

but we will not impose this assumption on our numerical simulations.

2.3 Rational herding equilibrium

Any strategy y(n,m, x) or τ(n, m) induces stochastic processes ηi and αi for

i ∈ II . The process αi can be calculated recursively:

αi = αi−1 +
1

i
(ηi − αi−1) (7)

This representation is helpful because it shows that each history {αi}I
i=1 has

the structure of a stochastic recursive algorithm, so that we can use results

from the adaptive learning literature to analyze convergence of αi as i →∞.
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To spell out the stochastic processes for ηi and αi, recall first that the c.d.f.

of the aggregate fundamental is G(Θ). Next, for each i ∈ I, a signal xi is

drawn with distribution F (x|Θ). The number of observations ni is drawn with

distribution Ni(n). These observations are drawn randomly from the set of

predecessors (without replacement). Therefore, if the fraction of predecessors

who have attacked is αi−1 = α, then the probability of observing exactly m

attackers in a sample of ni = n predecessors, is

Mi(m|n, α) ≡ prob(mi = m|i, n, α) ≡

(
α(i− 1)

m

) (
(1− α)(i− 1)

n−m

)

(
i− 1

n

) (8)

which goes to M(m|n, α) ≡
(

n
m

)
αm(1 − α)n−m ≡ n!

m!(n−m)! αm(1 − α)n−m

in the limit as i goes to infinity.

Given the individual state (ni,mi, xi), player i’s choice is ηi = 1 with

probability y(ni,mi, xi), and zero otherwise. This implies an explicit formula

for the probability that ηi = 1, given the fraction αi−1 of predecessors who

attacked, the index i, the state Θ, and the strategy y():

Ti(αi−1, Θ, y) ≡ prob(ηi = 1|i, αi−1, Θ, y) = (9)

Nmax
i∑

n=0

Ni(n)
n∑

m=0

Mi(m|n, αi−1)
∫ θ̄+ε

θ−ε
y(n,m, x)dF (x|Θ)

For large i, Nmax
i = Nmax and Mi(m|n, α) → M(m|n, α), so the sequence of

functions Ti approaches a limit T (α, Θ, y). Note that M and therefore T are

C∞ functions of α.

The function Ti states the probability that trader i attacks the currency,

given the fraction who attacked prior to him. Using Ti, we can construct all

the other probabilities that are needed to solve the model. In particular, we

need the following joint probability (for details, see Appendix B):

prob(αI , Θ, i, ni,mi, xi, |ηi = 1, y)
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which means the joint probability of the event in which the the aggregate

outcome is (αI , Θ), the individual position is i, and individual information set

is (ni,mi, xi), assuming that all other players use strategy y and the individual

chooses ηi = 1. Knowing this joint probability, the trader can construct the

conditional distribution he needs to solve his maximization problem:

Π(α, θ|n,m, x, η = 1, y) =

∑
i,αI≤α,Θ≤θ prob(αI , Θ, i, n,m, x, |η = 1, y)
∑

i,αI ,Θ prob(αI , Θ, i, n, m, x, |η = 1, y)
(10)

The conditional probability distribution in (10) is all the information nec-

essary to choose an optimal threshold strategy, so it also implies a fixed

point problem that defines the equilibrium strategy. Given any strategy y,

let Π(α, θ|n,m, x, η = 1, y) be given by (10). Then let By be the strategy

calculated from (5) for a player who makes inferences according to Π. That is,

By is the best response to y, so we have:

Definition. A rational herding equilibrium is a strategy y∗
which is a fixed point of the best response mapping B:

y∗ = By∗ (11)

Obviously, this definition also suggests an algorithm for calculating the

equilibrium:

1. Guess a strategy y(n,m, x) for all possible information sets
(n,m, x).

2. Using the mappings Ti, construct the conditional distribution Π
over aggregate outcomes conditional on individual information
and on choice η = 1, given that all others play y, as in (10).

3. For each (n, m, x), find the optimal probability of attack given
Π, as in (5).

4. Return to 2 and iterate to convergence.

Steps (2) and (3) constitute the best response mapping y′ = By. For the

details of this calculation, see Appendix B.

Distribution Π is one of the most important equilibrium objects, and can in

principle be observed in the laboratory, but it cannot be observed with macroe-

conomic data. The observable macroeconomic implications of the model are
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summarized by the distribution over aggregate outcomes. In particular, the

macroecononomic implications of the model can be stated in terms of the prob-

ability of any given aggregate outcome αI ∈ {0, 1/i, 2/i, ...1}, conditional on

aggregate fundamentals Θ:

p̂I(α|θ) ≡ prob(αI = α|Θ = θ) (12)

We will also use the notation P̂I(α|θ) ≡ prob(αI ≤ α|Θ = θ) to refer to the

associated c.d.f. Figures 2, 3, and 6 graph examples of the conditional outcome

distribution p̂I for various calibrations of the model, drawn as contour plots.

2.4 Boundedly rational decisions

The preceding model description is based on perfectly rational behavior (sub-

ject, of course, to the constraints imposed on the information set). That is, it

assumes that the probability of attacking jumps from exactly zero to exactly

one at the indifference threshold. However, it is unrealistic to expect such

sharp calculation in the laboratory, so it is also helpful to consider boundedly

rational behavior. In particular, in this subsection we restate the model under

the assumption of logit choice, which is often a successful representation of

discrete choice in laboratory work (Goeree and Holt 1999).

Under fully rational discrete choice of η ∈ {0, 1}, action η = 1 is chosen

with probability one if its payoff is strictly higher than that of η = 0, and vice

versa. Logit choice weakens this condition, and instead imposes the following

logistic probability of playing η = 1:

exp[λ−1u(1)]

exp[λ−1u(0)] + exp[λ−1u(1)]
(13)

where u(η) represents the expected payoff, in equilibrium, of action η. To

translate this behavior into our herding model, we simply need to plug in

the appropriate payoff function u(η). This turns out to be especially simple

since u(0) = 0 (the payoff of not attacking is always zero, regardless of the
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information set). Thus, using our previous notation, the logit probability of

attacking y(n,m, x) can be written as:

y(n,m, x) =
1

1 + exp
{
t/λ− λ−1EΠ

[
R(Θ)1αI≥a(Θ)|n, m, x, η = 1

]} (14)

Given this probability of attacking, the implied stochastic process for ηi

and αi can be constructed in terms of the function Ti(α, Θ, y) as before. Thus

we can also calculate the implied distribution of outcomes conditional on be-

havior, Π(α, θ|n,m, x, η = 1, y), following the same sequence of steps as in the

fully rational case. Therefore, a logit herding equilibrium solves a fixed point

problem analogous to that which defines a rational herding equilibrium.5 In

particular, define Bλy as the logit strategy defined by (14), when the condi-

tional distribution Π is given by (10). Then:

Definition. For a given λ, a logit herding equilibrium is a
strategy y∗λ that is a fixed point of the logit response mapping
Bλ:

y∗λ = Bλy
∗
λ (15)

Note that all the complicated steps in computing a logit equilibrium are

identical to those involved in finding a rational equilibrium: the hard part is

computing the conditional distribution Π implied by a given strategy y. The

only difference between the two fixed point problems is that the response to a

given Π is given by (14) in the logit case, and by (5) in the fully rational case.

In fact, the logit equilibria nests the rational case when we set λ = 0: that is,

B0 = B. At the opposite extreme, logit equilibrium also nests the trivial case

of fully random play. That is, y∗∞ = B∞y∗∞ = 0.5 for all (n,m, x): a strategy of

attacking with 50% probability regardless of the information set is the unique

logit equilibrium associated with λ = ∞.

5Logit equilibrium is a simple special case of quantal response equilibrium. See McKelvey
and Palfrey (1995). Kuebler and Weizsaecker (2004) also apply quantal response equilibrium
to a herding game.
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3 Characterizing equilibrium

3.1 Monotonicity properties

Intuitively, we expect more attacks when the aggregate state Θ is bad. Thus a

low signal x not only suggests that Θ is probably low, but also that the fraction

attacking is likely to be high. Likewise, observing a high fraction attacking

m/n both suggests that αI is high and that Θ is low. In other words, in a well-

behaved equilibrium, we might expect players’ inferences Π to be monotonic

in the following sense.

Definition. The probability assessment Π exhibits monotonic
inferences if the expectation EΠ(Θ|n,m, x) is increasing in
x and decreasing in m, and the expectation EΠ(αI |n,m, x) is
increasing in m and decreasing in x.

The net benefit from attacking, R(Θ)1αI≥a(Θ) − t, increases in αI and de-

creases in Θ. Therefore, if players make monotonic inferences, their expected

net payoff from attacking also varies monotonically with their observations.

That is,

EΠ

[
R(Θ)1αI≥a(Θ)|n,m, x, η = 1

]
− t

is increasing in m and decreasing in x. Thus, when inferences are monotonic,

players should choose monotonic strategies, in the following sense.

Definition. The probability of attacking y(n, m, x) is a doubly
monotonic strategy if ∂y

∂m
≥ 0 and ∂y

∂x
≤ 0.

Monotonic inferences imply doubly monotonic strategies both in the case of

fully rational behavior and in the more general case of logit behavior. In the

fully rational case, where the probability of attacking jumps from zero to one

exactly at the point of indifference, a doubly monotonic strategy can be called

a double threshold strategy. That is, it implies thresholds both in the x

and m directions: for each n and m there is a threshold τ(n,m) such that

y(n, m, x) = 1 when x ≤ τ(n,m), and is zero otherwise; while for each n and

x, there is a threshold µ(n, x) such that y(n,m, x) = 1 when m ≥ µ(n, x), and

is zero otherwise.
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If agents play doubly monotonic strategies, then for each player i, the

conditional probability of attacking Ti is increasing in αi−1 (because higher

αi−1 makes a higher mi more likely) and is decreasing in Θ (because higher Θ

makes a higher xi more likely). Therefore, by induction over the functions Ti,

we conclude that for each i, higher states Θ make a large number of attackers

αi less likely. This holds at the first step α1 because a higher Θ makes a higher

x1 more likely, which discourages attacks. It holds at all later steps αi because

a higher Θ makes a higher xi more likely, and because if Θ is high then αi−1

and therefore mi are likely to be lower. Both these factors discourage attacks

at each step i. That is, for any α, if θa > θb, then for any i,

P̂i(α|θa) ≡ prob(αi ≤ α|Θ = θa) ≥ prob(αi ≤ α|Θ = θb) ≡ P̂i(α|θb) (16)

Equivalently, this says that if θa > θb, then P̂i(α|θb) first-order stochastically

dominates P̂i(α|θa).

This statement characterizes the distribution of intermediate outcomes αi

and the aggregate outcome αI conditional on the aggregate fundamental Θ.

But players can also draw analogous conclusions on the basis of their own in-

formation sets. That is, if all players other than i follow a doubly monotonic

strategy, then agent i knows that P̂i−1(α|θb) first-order stochastically domi-

nates P̂i−1(α|θa) whenever θa > θb. Therefore, if agent i observes a high xi or

low mi, she should conclude that Θ is likely to be high and αi−1 is likely to be

low. Conditional on any given value of her choice ηi, agent i should therefore

also expect that the final outcome αI is more likely to be low. But this is

equivalent to saying that EΠ(Θ|n,m, x) is increasing in x and decreasing in

m, and that EΠ(αI |n,m, x) is increasing in m and decreasing in x: in other

words, player i should make monotonic inferences.

This brings us back to the assumption that started off our chain of reason-

ing. Therefore, although we have not proved that equilibrium must necessarily

involve monotonic inferences, we have listed a number of additional properties

that must hold if and only if herding equilibrium exhibits monotonic inferences.

The first proposition summarizes these findings.
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Proposition 1. A herding equilibrium which has any one of the
following properties has all of them.

a. The conditional distribution Π exhibits monotonic inferences.
b. Agents play a doubly monotonic strategy y.
c. For each i, mapping Ti is increasing in αi−1 and Θ.
d. For each i, the distribution P̂i(α|θ′) first-order stochastically

dominates P̂i(α|θ) if θ > θ′.

When we restrict consideration to threshold strategies, we will call an equi-

librium that has these properties a double threshold herding equilibrium.

In section 3.3, we will demonstrate by numerical construction that equilibria

of this type exist. Furthermore, in section 4.1, we will estimate the strategy

being used by our experimental subjects. The signs on the point estimates

of our coefficients are always consistent with the assumption that players are

using doubly monotonic strategies.

3.2 Limiting results: sufficient conditions for bimodal
outcomes

To further characterize the model’s behavior, it is helpful to focus on the lim-

iting case of a large number of players, I = ∞. This clears away the sampling

noise associated with the finite I game, offering a sharper characterization of

the distribution of aggregate outcomes. Equation (7), which shows that αi is a

“stochastic recursive algorithm”, tells us that in the large numbers game, the

only possible outcomes α∞ ≡ limI→∞ 1
I

∑I
i=1 ηi conditional on a given state

θ must be “E-stable” points in the sense of Evans and Honkapohja (2001).6

In terms of our previous notation, the E-stable interior points are simply the

points where T crosses the 45o line from above. At these points, the probabil-

ity that a given player i attacks is equal to the fraction of players who have

already attacked.7 Corner solutions can also be E-stable: α∞ = 0 is a solution

if T is zero at α = 0, and α∞ = 1 is a solution if T is one at α = 1.

6The dynamics of the I = ∞ case of a closely related game are analyzed in greater detail
in Costain (2007). In particular, Prop. 3 of that paper demonstrates the role of E-stability.

7More precisely, the probability that player i attacks equals the fraction who have already
attacked at the crossings of Ti. Ror large i, these are approximately the crossings of the
limiting function T .
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Thus, for a given aggregate state Θ = θ, and given an equilibrium strategy

y∗, the set of possible outcomes α∞ of the I = ∞ model is a set of discrete

points: those points where T (α, θ, y∗) crosses the 45o line from above, plus any

appropriate corners. There may be only one such point for each θ, which means

that the aggregate outcome is a well-defined function α∞(θ) of the aggregate

state. The first-order stochastic dominance property of Prop. 1d implies that

α′∞(θ) < 0: less players attack when the aggregate state is better, as shown in

Fig. 1b. But there may also be multiple crossings and/or corners for some θ,

which gives rise to an equilibrium correspondence like that in Fig. 1a. In this

case, multiple aggregate outcomes occur with positive probability at values of

θ for which T has multiple crossings. The monotonicity properties of T with

respect to α and θ imply that the branches of the outcome correspondence

behave as Fig. 1a indicates: each branch of the correspondence is downward

sloping, and the lowest point on a higher branch is higher than the highest

point on a lower branch.

When do these multiple branches of the outcome correspondence arise?

Given Assumption 1, which says that the full-information model has a tripar-

tite classification of states, we can show that the I = ∞ herding model also

has a middle range with multiple outcomes as long as Nmax is sufficiently large

and players are sufficiently rational. (We will state this fact for logit herding

equilibrium, which implies that it is also true for rational herding equilibrium,

since this is just logit with λ = 0.) Intuitively, if there are many players, who

mostly observe many other choices, then most players will be able to guess the

aggregate outcome. Therefore they should follow the crowd as if they had full

information about others’ decisions.

Proposition 2. Let I = ∞ and fix q. For sufficiently large Nmax,
in any doubly monotonic logit herding equilibrium yλ with suf-
ficiently small λ, there exists a nonempty interval of funda-
mentals (θ∗, θ∗) where the conditional distribution of aggregate

outcomes P̂ (α∞|θ, yλ) places positive probability on at least two
values of α∞ for each θ ∈ (θ∗, θ∗).
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Proof. See Appendix C.

The outcome distribution mentioned in Prop. 2 resembles that implied by a

full-information model with multiple equilibria, like Obstfeld (1996), in which

all players’ choices depend on an exogenously-imposed, extrinsic “sunspot”.

In herding equilibrium, though, the first few players’ actions depend mostly

on their own private information; thereafter, many players can make their own

decisions by simply following the crowd. In this sense, the herding equilibrium

endogenously creates a “sunspot”, which is just the consensus action of preced-

ing players. The proposition shows that a region of unpredictable outcomes

exists whenever the parameters permit sunspot equilibria in the full infor-

mation game, and most players are sufficiently rational and observe enough

previous actions. But in spite of the unpredictability of the actual outcome,

players’ double threshold strategies ensure that the distribution over aggre-

gate outcomes is well behaved: bad fundamentals make it more likely that

many players attack and therefore also more likely that the attack is success-

ful. By contrast, a full-information sunspot equilibrium need not have these

intuitively reasonable comparative statics properties, which is one of MS98’s

main criticisms of analyses based on sunspot equilibria.

3.3 Numerical results: comparative statics properties

When the number of players is finite, the set of possible outcomes is no longer

limited to a small number of discrete points, because sampling error will spread

out the possible realizations of αI . Nonetheless, we will now show by simulation

that the results are qualitatively quite similar with finite I. Intuitively, players’

incentives to learn from others and to follow the crowd are not very different

when I is large and finite from the I = ∞ case. Thus the functions Ti are

quantitatively similar, causing the outcomes of the model with sufficiently

large I to be tightly clustered around the outcomes of the infinite-player model.

Thus if the I = ∞ model has a single possible outcome, then the finite-I model

should have a unimodal distribution p̂I over α for each θ. If T has two stable

crossings over some range of θ for the the I = ∞ model, then there should
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be a strongly bimodal distribution of outcomes αI conditional on roughly the

same θ for large but finite I.

Results for some simulations with finite I are shown in Figure 2. In these

examples we choose parameters to guarantee the existence of dominance re-

gions at both ends of support of aggregate fundamentals, as in Assumption 1.

We assume Θ lies on a grid Γθ from 15 to 85, and that signals x are drawn from

Θ − 15 to Θ + 15. We assume the hurdle function a(Θ) = Θ
40
− 3

4
, and spec-

ulation payoff function R(Θ) = 100 − Θ, and transactions cost t = 30. With

these parameters, the full-information model would have multiple equilibria

from θm = 30 + 40/I to θm = 70.

The first row of the figure shows the probability distribution implied by

the model for finite games with I = 8, 12, and 16. The graphs refer to a

logit equilibrium yλ with an intermediate level of rationality (λ = 6.4), setting

q = 1, so that all previous actions are observed. The graphs show the contour

lines of the conditional probability function p̂I(α|θ, yλ). What can see from

the contour lines is a clear “tripartite classification of fundamentals”. There

is an interval of sufficiently bad aggregate states, up to almost θ = 40, where

players almost always attack. There is also a region of sufficiently good states,

starting around Θ = 70, where players almost never attack. However, over the

middle range, the distribution of aggregate outcomes is sharply bimodal in the

α direction.

Over the intermediate range of aggregate states, most outcomes take one

of two forms: most players attack, or most players do not attack. Thus, there

is not a unique relation between the state and the outcome. Nonetheless, the

comparative statics of the distribution of outcomes with respect to the aggre-

gate state are well-defined and well-behaved: the contour lines make clear that

the probability of an outcome in which most agents attack is decreasing in Θ.

In addition, unlike the I = ∞ model, it does occasionally happen that the

fraction attacking is intermediate. As intuition would suggest, outcomes with

roughly 50% attacking are more common when the total number of players is

small. That is, while “following the crowd” is not a meaningful strategy for the
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Figure 2: Contours of outcome probabilities p̂I : 1%, 2%, 4%, 8%, 16%, 32%,
and 64% contours

first few agents, with sufficiently many players the aggregate outcome eventu-

ally snowballs towards all attacking, or none attacking, making the distribution

more strongly bimodal with twelve or sixteen players than with eight.

Besides assuming an infinite number of players, the proof of a sharply bi-

modal outcome distribution in Prop. 2 relied on two additional assumptions:

observations of a sufficiently large number of previous choices, and fully ratio-

nal behavior. Relaxing these assumptions can undo our results in Prop. 2. In

particular, there are obviously some circumstances in which our model gener-

ates a unique outcome as a function of fundamentals, since it nests the model
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of Morris and Shin (1998) when no previous choices are observed. However,

our model also generates a variety of intermediate cases, as Fig. 2 illustrates.

The second row of Fig. 2 shows how the equilibrium changes with the

number of previous observations. The three graphs show logit equilibria with

8 players and λ = 10, for different values of q. The graph on the left is the

case q = 0, with no observations of previous actions, which makes our model

equivalent to that of MS98 and HNO04. In this case, we see a unimodal dis-

tribution of outcomes conditional on any given fundamental θ: since players

cannot condition on the choices of others, herding cannot get started. The

next two graphs show that as we increase q, multiple outcomes gradually be-

come possible. In the middle graph, with q = 0.5, we already see a tripartite

classification of fundamentals, with almost all attacks on the left, almost no

attacks on the right, and with all possible outcomes (from 0 to 8 attacks) oc-

curring with probability above 1% in the middle region from roughly 42 to 58.

In the graph on the right, with q = 1, players are more able to coordinate their

actions, so the distribution becomes bimodal in the middle range.

Finally, the last row of Fig. 2 shows the effect of the level of rationality.

(All equilibria shown assume 8 players and q=0.75.) With λ = ∞ (left graph)

attacks occur randomly, with probability 0.5. Therefore the number attacking

is symmetrically distributed around 4, regardless of θ. With an intermediate

level of rationality, like λ = 10, coordination is already strong enough so that

all outcomes occur from roughly θ = 38 to θ = 61, and over much of this

range the distribution of αI is bimodal. As rationality increases, to λ = 1.6

(which is almost indistinguishable from the fully rational case λ = 0), the

bimodality becomes much stronger. Thus in this case, over the middle range

where multiplicity occurs, almost all outcomes are predicted to have 0, 1, 7,

or 8 attacks.

In summary, our model predicts a tripartite classification of fundamentals,

with multiple outcomes in the middle region, when parameters are chosen so

that (1) the full-information game also has a tripartite classification of funda-

mentals; (2) the number of players is sufficiently large; (3) players observe a
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sufficiently large number of previous actions; (4) players are sufficiently ratio-

nal. As we reduce the number of players, or the number of observations, or

the level of rationality, coordination becomes weaker. Typically this implies

first that the sharp bimodality of the middle interval gradually disappears, and

eventually that the multiplicity disappears too.

4 Experimental results

Our experimental sessions had eight or twelve participants. They interacted via

a computer network, using z-Tree software (Fischbacher 1999). In sessions with

eight participants, nine rounds were played; when we had twelve participants,

only seven rounds were played. In each round, all participants played our

game eight times (in parallel) so that each session yielded 72 or 56 aggregate

outcomes of our game and 72*8=576 or 56*12=672 observations of individual

decisions.

Appendix A translates the instructions we handed out to participants in

one of our sessions at Univ. Carlos III in Madrid. In our sessions, play passed

through a series of decision steps, in each of which a participant made (at most)

one choice. When a participant was required to choose, the computer informed

her of her information set. Specifically, the computer screen displayed her

signal x, and some information on previous players’ decisions: the total number

of observations n, the number attacking, m, and the number not attacking,

n−m. In some sessions, players knew their position in the sequence, because

they had exactly one choice in each decision step (so they knew they were

first in one sequence, second in another, etc.) In other sessions, we made the

number of decision steps substantially larger than the number of players, and

started some sequences later than others, so that players could not infer their

positions from the timing of their choices. However, there was no noticeable

difference between the sessions in which positions were known and those in

which they were unknown.

Figure 3 shows the results from four of our sessions, using parameters like

those in Sec. 3.3. We drew Θ from a grid over [15, 85], and x from a grid over
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[Θ − 15, Θ + 15]. We imposed the attack payoff function R(Θ) = 100 − Θ,

hurdle function a(Θ) = Θ
40
− 3

4
, and transactions cost t = 30.8 The figure

compares four sessions in which the fraction of previous plays observed was

q = 0, 0.5, 0.75, or 1. (In each case, the session shown is the first in which we

ran that particular parameter configuration.) For each session, the figure plots

the contour lines of the conditional probability function p̂8(α|θ, y∗), calculated

numerically from the rational herding equilibrium.9 As in Fig. 2, the contour

lines shown represent 1%, 2%, 4%, 8%, 16%, 32%, and 64% probability levels.

The actual observations from the experiment are plotted as stars, superim-

posed on the theoretical predictions. The data shown correspond to the last

six of the nine rounds played, in order to remove any transitional dynamics

caused by learning.10

The results of session 4, in which previous actions are unobserved, so that

choices are logically simultaneous even if they do not occur at exactly the same

time, are shown in the first panel. Our theory predicts a unimodal distribution

in this case. The experimental results (the stars in the graph) show that from

θ = 35 to θ = 65, the fraction attacking decreases gradually, smoothly, and

almost linearly from one to zero. Thus the experimental distribution is always

clearly unimodal conditional on θ, and it is also close to the distribution p̂8

8HNO04 found that subjects understood the game better with the definition of the aggre-
gate state reversed so that a′ < 0 and R′ > 0. Therefore they described the model in terms
of the transformed state Y ≡ Θ − 100. Also, they wrote the hurdle function as a number
of players rather than as a fraction. We follow their conventions. So when describing the
game to subjects, we state that the payoff is R(Y ) = Y , and that the hurdle function is
Ia(Y ) = 8( 100−Y

40 − 3/4) = 14− 0.2Y or Ia(Y ) = 12( 100−Y
40 − 3/4) = 21− 0.3Y , depending

on the number of players. We give a neutral description of the game, calling the choices A
and B, and making no reference to currency speculation.

9Actually, the figures show a logit equilibrium with λ = 1. Previous versions of the
paper reported numerical simulations of a rational herding equilibrium, imposing threshold
form; these results are available on request. However, that procedure gave virtually identical
results, so rather than run two separate sets of simulation routines, we now report a logit
equilibrium with low λ instead of the rational herding equilibrium.

10Our impression is that players are initially mostly predisposed to follow their own signals,
but then learn to follow others more over the first few rounds. The learning effects appear
small, though: the graphs are quite similar when we include all rounds.
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Figure 3: Contours of outcome probabilities p̂I in rational herding equilibrium,
with experimental observations.

implied by theory (illustrated by the contour lines). These results resemble

those found by HNO04.

In the other three panels, though, the experimental results are distinctly

different. In particular, we see more coordination, with outcomes of 0, 1, 7, or

8 attackers far more common than intermediate outcomes. For low θ, almost

everyone attacks, and for high θ almost no one does. But there is not an

intermediate range with intermediate numbers attacking. Outcomes with 3, 4,

or 5 attackers are rare, especially in the treatments with q = 0.75 and q = 1,

which is consistent with the theoretical predictions shown by the contour lines.

Thus, even at intermediate values of fundamentals, the outcomes tend to
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lie at the extremes. Moreover, in all the q ≥ 0.5 panels, some of the extreme

outcomes overlap in the “wrong” direction relative to fundamentals. In the

q = 0.5 treatment, for example, we observe attacks by seven players twice near

θ = 55, but another case with only one attack when θ was only slightly over

40. Both the finding that extreme outcomes are more common than interme-

diate outcomes, and the finding that some of the outcomes that coordinate on

attacking occur at higher fundamentals than others that coordinate on not at-

tacking, are consistent with the strongly bimodal outcome distribution implied

by the theory. So instead of interpreting these extreme outcomes vacuously

as “outliers”, it makes more sense to interpret them as examples of herding

behavior, in which the choices of the first few agents serve to coordinate the

choices of following agents.

Of course, a few experimental observations in these sessions are well outside

the range predicted by the theoretical model. But given that this version of

the model makes no allowance at all for human error, the fit is remarkably

good. We now go on to consider all our 14 sessions, with 8 or 12 players, to

see how these results hold up. Besides varying q from 0 to 0.5, 0.75, or 1, we

also vary the support of the idiosyncratic signal, comparing θ± 15 with θ± 8.

We also compare sessions in which players were informed of their position in

the sequence, and sessions where they could only deduce their position from

the number of previous choices observed. To summarize the results obtained

across different sessions, we next estimate players’ strategies in each session,

and compare their implications.

4.1 Reduced form strategy estimates

A glance at Figure 3 suggests that the distribution of aggregate outcomes im-

plied by our game differs greatly depending on whether or not previous actions

are observed. But it is hard to draw firm conclusions from these graphs because

of the relatively small number of aggregate outcomes observed— and the even

smaller number of cases where the fundamentals lie in the most interesting

range— in each experimental session. Therefore, we next estimate the strat-

egy used by our experimental subjects, allowing us to compare their behavior
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with the predictions of the model. We can also use the estimated strategy to

calculate the distribution of aggregate outcomes associated with each exper-

imental session, thus obtaining a clearer, more quantitative understanding of

aggregate behavior.

In our fully-rational theoretical model, players attack if and only if their

signal exceeds a threshold τ(n,m). Obviously, in the laboratory, play will be

more random than this. This motivates the logit equilibrium defined in Sec.

2.4. In the next subsection, we will estimate the logit equilibrium. But first,

we estimate a simpler reduced-form choice model, in order to avoid imposing

so much theoretical structure on players decision. Thus we model our experi-

mental subjects’ probability of attacking, conditional on their information sets,

as the following linear-logistic function:

Probability of attacking:

prob(ηi = 1|xi, ni,mi) =
1

1 + exp{γ(ni)[xi − δ(ni)− ξ(ni)(mi/ni − 0.5)]}
(17)

In this formula, the probability of attacking, conditional on the information

set (xi, ni,mi), is a number between 0 and 1. This probability depends on three

parameters, γ(n), δ(n), and ξ(n), which may in general vary with the number

of observations n. The formula is written so that the estimates of γ(n), δ(n),

and ξ(n) ought to be positive. As long as γ is positive, the probability of

attacking is a decreasing function of the signal x.

The parameters in the formula have straightforward interpretations. Pa-

rameter δ can be seen as an unconditional threshold signal. That is, if the ob-

servations of other actions are uninformative (ni = 0 or mi/ni = 0.5), then the

player attacks with probability 0.5 when she observes the signal xi = δ(ni).
11

When observations of other actions are informative (mi/ni 6= 0.5), then we

can interpret δ(n) + ξ(n)(mi/ni − 0.5) as the conditional threshold signal at

11For the case n = 0, if the coefficients are allowed to vary with n, then δ(0) and ξ(0) are
not separately identified; in this case we preserve the interpretation of δ(0) as an uncondi-
tional threshold signal by setting ξ(0) = 0. On the other hand, when we do not allow the
coefficients to vary with n, we preserve the interpretation of δ as an unconditional threshold
signal by setting mi/ni ≡ 0.5 whenever ni = 0.
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which the probability of attacking is one half. Positive ξ means the threshold

signal for attacking is higher when a higher proportion of attacks is observed:

that is, players are more likely to attack when they observe others attack-

ing. Finally, parameter γ(n) indexes the precision of individual behavior. If

γ(n) = 0, then behavior is always totally random; that is, the probability of

attacking is always 0.5. If γ(n) = ∞, then there is no randomness in individual

behavior, conditional on the individual information set, as in our fully rational

theoretical model.

Using experimental data on signals xi, observations ni and mi, and deci-

sions ηi, we estimate this strategy by maximum likelihood for each experimen-

tal session separately. Using the estimated strategy y, we can then calculate

the implied conditional outcome probabilities p̂I(αI |Θ, y). We can also use

it to simulate additional experimental sessions. By repeating our maximum

likelihood estimation on these artificial experimental data sets, we can obtain

bootstrap estimates of the confidence intervals on our parameter estimates.

Importantly, we can also estimate confidence intervals for any statistics of the

aggregate distribution p̂I that interest us.

Our parameter estimates for each session are displayed in Tables 5-4. To

eliminate transitional dynamics in players’ strategies due to learning, we dis-

card the first two rounds of each session before estimation. We allow the

coefficients γ, δ, and ξ to vary with n, though the number of data points is

too small (especially for high n) to permit fully arbitrary variation with n.

However, this appears not to be a problem. The likelihood of our sample

improves greatly if we allow ξ to change between low and high n. In ses-

sions with eight participants we estimate ξ0−2 ≡ ξ(n), n ∈ {0, 1, 2} separately

from ξ3−7 ≡ ξ(n), n ∈ {3, 4, 5, 6, 7}; with twelve players we estimate ξ0−3 ≡
ξ(n), n ∈ {0, 1, 2, 3} separately from ξ4−11 ≡ ξ(n), n ∈ {4, 5, 6, 7, 8, 9, 10, 11}.
Similarly, we check whether the likelihood is improved by estimating δ or γ

(see Tables 2 and 4) separately for low and high n, or by breaking the coeffi-

cients at more than one n, but the changes rarely yield significantly different

point estimates or a significant improvement in likelihood.
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Estimates of the unconditional threshold signal δ range from 46.77 to 58.81;

estimates over 50 imply that players attack slightly more often than they re-

frain from attacking. Estimates of ξ(n) are robustly found to be larger when n

is larger. This makes sense: it means that subjects react more to the observed

fraction attacking if they have observed many actions. For example, the coef-

ficient estimates for session F3 imply that the difference between the threshold

when only attacks are observed, and when no attacks are observed, is 7.136

for n ≤ 2, but rises significantly to 34.36 for n ≥ 3. The pattern for γ is less

clear, but in those sessions where we find significant differences, γ decreases

with n.

We also report two statistics describing the distribution of aggregate out-

comes. We search for values of the aggregate state such that the conditional

distribution of αI , the aggregate fraction attacking, is bimodal. As our model

predicts, no bimodal region is detected for the sessions in which previous ac-

tions are unobserved, and generally the estimated bimodal region is larger

when more predecessors are observed. But unlike the rational herding model,

in which players act without error, only very mild bimodality is observed in

the experiment. The widest estimated region of bimodality is only 3.5 units

wide, and the bimodal regions are (individually) never statistically significant.

We also report the width of the interval of fundamentals in which both the

lowest and the highest values of αI occur with at least 1% probability. Again,

as we would expect from our model, this region is wider when more previous

actions are observed. When no previous actions are observed, no aggregate

states are found in which both αI = 0 and αI = 1 occur. But when we set

q = 0.5, so that half of the preceding actions are observed, only one out of 5

sessions fails to detect a region in which both extreme outcomes occur. For the

other four sessions with q=0.5, the width of the region of multiple outcomes is

estimated to be 1.5, 13.5, 6.0, or 8.5; the last three are significant. For q = 0.75

and q = 1, we always detect regions in which both extreme outcomes occur

with at least 1% probability. The estimated widths of the region of multiple

outcomes for these sessions are 13.5, 13.0, 9.0, 18.0, 13.0, 4.5, and 9.0, all of

which are significantly different from zero. Thus sessions with q ≥ 0.5 usually
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exhibit a “tripartite classification” of aggregate fundamentals, with a middle

region where multiple outcomes can occur.

4.2 Estimating logit equilibrium

We next pursue a more structural empirical strategy, by directly estimating

the logit equilibrium. There are a number of important advantages to this

estimation procedure. First, it imposes a lot of structure on the predicted

outcome distribution, since the logit equilibrium has only one free parameter:

namely, the rationality index λ.

Estimating logit equilibrium is computationally intensive, because calcu-

lating a single equilibrium is already a challenging problem, and for the esti-

mation we must do this repeatedly across values of λ. Obviously, though, the

fact that we only need to search over one free parameter enormously simplifies

the estimation. Moreover, it also simplifies the calculation of each equilib-

rium. We know immediately that the logit equilibrium associated with λ = ∞
is y(n,m, x) = 0.5 for all (n,m, x). We can then use this equilibrium as a

starting guess for the fixed point calculation for some large but finite value of

λ. Also, for sufficiently large λ, players respond weakly to any change in pay-

offs, which means they respond weakly to the strategies of other players, which

means that the mapping Bλ is a contraction map, and that logit equilibrium

is unique.

Therefore the natural way to compute the logit equilibria is to calculate

them sequentially, for a decreasing sequence of values of λ, using the equilib-

rium associated with λj as a starting point for the fixed point calculation for

λj+1 < λj. Since the equilibrium yλj+1
should be close to the equilibrium λj,

we can numerically calculate the dominant eigenvalue of each best response

mapping Bλj
by looking at the local rate of convergence. This allows us to

check whether each equilibrium yλj
is locally unique (though global uniqueness

is not guaranteed by this routine). If local uniqueness breaks down, we propose

to select an equilibrium numerically by imposing partial adjustment— that is,

by finding a fixed point of y′ = αBλy + (1− α)y instead of y′ = Bλy, for some
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Figure 4: Log likelihood and diagnostics, Session 4 (q=0)

0 < α < 1. Thus we can compute a whole spectrum of logit equilibria from

λ = ∞ to λ ≈ 0, which is arbitrarily close to a rational herding equilibrium.

Once we have computed the system of logit equilibria (which is slow, but

not much slower than computing a single rational herding equilibrium from

arbitrary initial conditions), we can quickly and easily evaluate the likelihood

of each equilibrium, given our experimental data. Figures 4 and 5 show the

log likelihood function, and associated diagnostics, for sessions 4 and 1, which

are the q = 0 and q = 0.75 sessions already seen in Fig. 3. The log likelihood

functions are well behaved, and we estimate λ = 9.12 for session 4, and λ =

9.55 for session 1. The standard errors on these estimates are 0.13 and 0.11,

so the estimated λ differs slightly but significantly between these two sessions.

Results for these and other logit equilibrium estimates are given in Table 5.
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Figure 5: Log likelihood and diagnostics, Session 1 (q=0.75)

Given the estimated λ, we can graph the distribution of aggregate outcomes

in the estimated equilibrium, as before. As Figure 6 shows, the equilibrium

appears to predict the distribution of experimental outcomes very well. Like

the fully rational case, the estimated q = 0 equilibrium is unimodal, with the

attack fraction decreasing smoothly from α ≈ 1 to α ≈ 0. There are no values

of the fundamental θ at which both extreme outcomes occur with probability

1% or more.

On the other hand, for all q ≥ 0.5, the estimated logit equilibrium exhibits

a tripartite classification of states. The width of the region of multiplicity

(defined as at least 1% probability of each extreme outcome) is similar to that

in the fully rational equilibria of Fig. 3. However, the fit of the estimated

logit equilibria is much better than that of the corresponding rational herding

30



Aggregate state

N
u
m

b
e
r 

a
tt
a
c
k
in

g
Session 4 (q=0): logit equilibrium, (lambda=9.1)

20 40 60 80
0

2

4

6

8

Aggregate state

N
u
m

b
e
r 

a
tt
a
c
k
in

g

Session 5 (q=0.5): logit equilibrium, (lambda=7.9)

20 40 60 80
0

2

4

6

8

Aggregate state

N
u
m

b
e
r 

a
tt
a
c
k
in

g

Session 1 (q=0.75): logit equilibrium, (lambda=9.5)

20 40 60 80
0

2

4

6

8

Aggregate state

N
u
m

b
e
r 

a
tt
a
c
k
in

g

Session 2 (q=1): logit equilibrium, (lambda=10)

20 40 60 80
0

2

4

6

8

Figure 6: Contours of outcome probabilities p̂I in estimated logit equilibrium,
with experimental observations.

equilibria — there are no outliers with respect to the estimated equilibria. This

is because logit equilibrium allows for some errors, thus making the distribution

less sharply bimodal than the rational herding equilibrium. Still, it is more

bimodal than the distributions implied by our reduced form strategy estimates:

even with q = 0.5, the predicted shape of the distribution is weakly bimodal.

As expected, it is even more strongly so for q = 0.75 and q = 1.

Of course, one way our estimation routine might account for all the ob-

servations, without outliers, is that we could estimate such a low degree of

rationality that any outcome is possible. But this is clearly not what is hap-

pening, because our subjects’ realized earnings show that they are actually
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highly rational. The second row of Figs. 4 and 5 shows the estimated payoffs

in the logit equilibria associated with all values of λ. The middle curve in

each graph is the unconditional expected payoff of a player in the estimated

logit equilibrium. We compare this with the payoffs of the best response to

the estimated equilibrium. This shown by the upper curve, which represents

the payoff to a single perfectly rational player (λ ≈ 0) who knows that her

opponents use the equilibrium strategy y∗λ. In other words, the top curve is

the value of y = B0y
∗
λ. Note that at the maximum likelihood estimators, the

payoff of the estimated strategy is e0.226 per decision for the q = 0 session,

and e0.234 for the q = 0.75 session. By way of comparison, the best response

to these estimated equilibria would pay e0.232 per decision or e0.240 per

decision, respectively. Thus even though our subjects’ behavior is noticeably

different from fully rational play, further improvement would only raise pay-

offs by around six tenths of a euro cent. Also, subjects earn much more than

the value of random play, (that is, the payoff of attacking with probability

0.5 when everyone else plays the estimated strategy y∗λ), which earns around

sixteen euro cents per decision, as shown by the lower curve in the graph.

Finally, Figs. 4 and 5 also show an upper bound on the eigenvalues of

the best response mapping at the logit equilibrium yλ for each λ. Note that

for session 4 (q = 0), the eigenvalue is less than 0.5 (in absolute value) at

all the equilibria calculated, down to λ = 0.1, which is extremely close to

full rationality. That is, all the q = 0 equilibria we calculated are locally

unique. For session 1 (q=0.75), on the other hand, the eigenvalue bound does

climb above 1 as rationality increases. Therefore, we cannot guarantee local

uniqueness of equilibrium at all levels of rationality. Nonetheless, uniqueness

only breaks down for λ < 4, substantially beyond the degree of rationality

observed for our experimental subjects. The results are similar in all of the

other sessions we have estimated. While the dominant eigenvalue of the best

response mapping typically rises above one at sufficient rationality, this never

occurs at levels of rationality observed in our experiment.

Therefore, our experimental results provide an interesting contrast in the

conclusions they suggest about the theoretical issue of uniqueness of equilib-

rium, and the empirical issue of uniqueness of outcomes— two issues which
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cannot be addressed separately when a speculative attack is modelled as a

simultaneous move global game. When we allow for players’ imperfect ratio-

nality, equilibrium is unique at the levels of rationality estimated in the labo-

ratory. Therefore the model provides unambiguous predictions about players’

strategies and the resulting distribution of aggregate outcomes— and the pre-

dictions work very well in the laboratory. Nonetheless, what is predicted is

the probability distribution over outcomes, not the outcome itself. When q is

large, the predicted distribution implies that agents tend to coordinate ran-

domly on one extreme of the outcome distribution or the other. Empirically,

therefore, the model says there is no reason to expect a unique outcome as a

function of fundamentals.

5 Conclusions

This paper reports an experiment on a speculative attack game identical to that

in Morris and Shin (1998) and Heinemann et al. (2004), except that we allow

for the possibility that some previous actions are unobserved. As our model

predicts, we find that players not only condition their attack decisions on their

private information, but also on their observations of previous actions. Players

condition more strongly on the average previous action when the number of

actions they observe is larger.

In our model, we show how this type of herding behavior affects the dis-

tribution of aggregate outcomes. In particular, we show sufficient conditions

under which the aggregate outcome becomes unpredictable as a function of ag-

gregate fundamentals. A region of fundamentals with unpredictable outcomes

arises when a sufficiently large number of sufficiently rational agents play a co-

ordination game which would have multiple equilibria under full information,

and these players observe a sufficiently large number of previous actions. In

this case, the private signals of the first few players can become decisive for

the final outcome, as other players follow their lead.

The model nests a variety of cases in which the sharp type of outcome

multiplicity from the infinite player game gradually breaks down. When the
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number of players is smaller, sampling error smoothes out the distribution of

outcomes; and when players are less rational or have less information about

previous plays, they coordinate their play less strongly with previous choices.

All these effects reshape the distribution (continuously) in ways that tend to

eliminate multiplicity. In particular, if we go to the “global games” case of

perfectly simultaneous choice, coordination becomes impossible, and therefore

variation in aggregate outcomes, if any, is due entirely to sampling error.

Our experiment allows us both to test our model and to see which of the

special cases of our model best describes actual subjects’ decisions. Observed

play in the laboratory somewhat resembles the fully rational equilibrium for a

finite number of players, but log likelihood sharply rejects full rationality. A

boundedly rational version of our model, however, appears to fit our experi-

mental observations extremely well. Our reduced form strategy estimates have

all the right signs that our model implies. Our structural estimate of the logit

equilibrium does an excellent job of predicting the distribution of aggregate

outcomes, with a similar degree of rationality predicting outcome distributions

under substantially different parameter configurations.

Even though full rationality is rejected, we calculate that individual play-

ers’ losses due to irrationality are very small. The degree of rationality we

estimate is sufficient to yield an outcome distribution with a “tripartite classi-

fication of fundamentals” in a game of eight or twelve players. Of course, as the

model predicts, this depends on whether previous actions are observed. With

no observations of previous actions, we obtain a unique outcome at any level

of fundamentals, subject to some small-sample variation. With q ≥ 0.5, we

sometimes detect a significant middle range in which both extreme outcomes

occur; with q ≥ 0.75 we always detect a significant range of multiplicity. How-

ever, the level of rationality does not appear sufficient to produce bimodality

of outcomes in the middle region of fundamentals, at least with the number of

players we have been able to study in our laboratory work.

These results suggest a number of conclusions about the “global games”

methodology, and its application to currency crises. It would definitely be
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wrong to conclude, on the basis of the “realism” of adding some private infor-

mation to the model, that speculative attacks must have a uniquely defined

outcome. Here we further increase “realism”, by considering decisions that

are not exactly simultaneous, and we find that a uniquely defined outcome

no longer follows. But whether or not self-fulfilling speculative behavior often

randomizes over aggregate outcomes in practice remains an empirical question,

because it depends (among other things) on how large the number of signif-

icant players in financial markets is, and on the degree of information that

these players have about others’ moves when they make their decisions.

Methodologically, using a small amount of heterogeneity (such as private

information) in order to smooth players’ average responses enough that the

theoretical model makes a well-defined prediction remains a very useful idea.

But this paper suggests that other forms of heterogeneity may be more useful

modeling devices for this purpose. In this paper, the noisiness of choices im-

plied by the small amount of bounded rationality we observed in the laboratory

was sufficient to guarantee uniqueness of our equilibrium (and to match our

experimental observations). Using bounded rationality as a modeling trick to

generate uniqueness allowed us to extend our speculative game to nonsimul-

taneous choice, which has proved challenging in models where the preferred

modeling trick was instead private information. And extending to nonsimul-

taneous choice was crucial for us in characterizing what sorts of situations are

likely to permit self-fulfilling speculative behavior to occur.
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Appendix A: Instructions for participants

The next three pages are an English translation of the instructions handed out

to experimental subjects in our first session at the Univ. Carlos III in Madrid.

The original instructions handed out in Spanish or German are available upon

request.
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General information 

Thank you for participating in an economic experiment, in which you will have a 

chance to earn money.  Please do not talk to the other participants from now on.  If you 

have a question, please raise your hand, and one of the instructors will come to you. 

 

You are one of 8 participants who will interact with each other in the experiment.  The 

rules are the same for all participants.  The experiment consists of 9 rounds.  Each 

round consists of 8 independent situations in which you must make a decision.   
 

Decision situations 
The important fact about each situation is a number, called Y, between 15 and 85, which 

will be chosen randomly by the experimenter’s computer.   This number will be the 

same for all participants.  All numbers between 15 and 85 are equally probable.  When 

you make your decision, you will not know Y. 

 

However, even though you do not know Y, you will receive a hint about its value.  This 

hint will be another random number, between Y-15 and Y+15.  All numbers between  

Y-10 and Y+10 are equally probable.   Every participant will receive a hint, but their 

hints will be independent, so they will not necessarily be equal.   

 

After receiving your hint, you will choose one of two actions, A or B. 

 

If you choose action A, you will receive a payoff of 30 points.  This payoff is the same 

in every situation, in every round, for every participant. 

 

If you choose action B, you will receive a payoff of Y points, as long as a sufficiently 

large number of other participants choose B too.  To be precise, action B will be 

successful--- that is, it will pay you Y points--- if the total number of participants 

choosing B is at least 14-Y/5.  There is a table on the next page to clarify this formula.  

According to this formula, action B is more likely to be successful if Y is large, and/or 

if many participants choose B.  But if action B is not successful, then anyone who chose 

B will receive a payoff of 0 points. 

 

In summary, action A always pays 30 points.  Action B can pay Y points (if many 

players choose B), or it can pay 0  points (if few players choose B).  Keep in mind that 

you will not know exactly how big Y is. 

 

(Please note: the software used in this experiment indicates decimal numbers with a 

decimal point, instead of a comma.) 

 

 

  

 

 

 

 

 

 

 



If the unknown number Y (which is at 

least 15, and at most 85) lies in the 

interval mentioned below, 

 

then at least this number of participants must 

choose B in order for B to be successful, 

implying a payoff of Y points. 

Y is less than 30: B cannot be successful 

Y is between 30.00 and 34.99: 8 participants must choose B 

Y is between 35.00 and 39.99: 7 or more must choose B 

Y is between 40.00 and 44.99: 6 or more must choose B 

Y is between 45.00 and 49.99: 5 or more must choose B 

Y is between 50.00 and 54.99: 4 or more must choose B 

Y is between 55.00 and 59.99: 3 or more must choose B 

Y is between 60.00 and 64.99: 2 or more must choose B 

Y is 65 or greater:  If you choose B, then B will be successful  

 

In each situation, all participants will make a choice.  In each situation, they will choose 

one after another, but in each situation, the order of their choices is different.  The 

number of participants who have made their choices before you, in a given situation, is 

equal to the number of decisions you have already made.  For example, if you are 

making your fourth decision in a given round, you will know that three participants 

already made decisions in the situation you are currently facing. 

 

When you need to make a decision in a given situation, some information about that 

situation will appear, in red, on your computer screen.  You will see the numerical hint 

which tells you, roughly but not exactly, the value of Y.  You may also see some 

information about the decisions made by other participants in the same situation. 

 

The computer may, randomly, tell you some of the choices made in the same situation 

before your decision.  To be precise, each previous decision has probability 0.75 of 

being revealed to you.  Therefore, you might not receive any information about previous 

decisions, even though some other participants have already chosen. 

 

Therefore, in general you will not observe all the choices made before your decide in a 

given situation.  What you will know is how many previous choices the computer has 

revealed to you.  You will know how many of these decisions were A, and how many 

were B.  If you observe some previous choices, you will not know which participants 

made the choices you observe. 

 

The random set of previous decisions that are revealed is different for each participant 

and for each situation.  You will never know who has learned about your own decisions, 

or whether they have been revealed at all. 

 

How the computers work 

When the red information about a given situation appears on your screen, you should 

then choose one of the two options A or B.  You will make your choice by clicking on 



one of the two buttons labelled “A” and “B”.  Next, you must click “OK” (at the bottom 

of the screen) to confirm your choice.  You can change your choice before you click 

“OK”, but thereafter your choice is fixed.   

 

When it is your turn to choose, a clock will appear at the top of your computer screen, 

showing a total of 30 seconds available to make your decision.  Please try to decide 

during this time, so that the experiment moves ahead rapidly.  However, there is no 

penalty for exceeding the time limit; even after the 30 seconds you will still have the 

opportunity to make your choice. 

  

Information after each round 
A round ends after all participants have made their choices in all 8 situations of that 

round.  When the round ends, the following information will be displayed on your 

computer screen: 

(1) the true value of the number Y in each situation; 

(2) the total number of participants who chose A, and the number who chose B, in 

each situation;  

(3) the number of points you earned in each situation. 

 

You will also be informed about the total number of points you have earned in the 

rounds that have finished so far.  Obviously, this total can grow over time, and cannot 

decrease.  

 

This information will be visible on your screen for up to 120 seconds, indicated by a 

clock at the top of your computer screen.  During this time, you may take notes, if you 

wish.  After 120 seconds, the information will disappear from your screen, but if you 

wish you can click on the “OK” button to erase it earlier.   Once the information 

disappears, there is no way to retrieve it. 

 

Once all participants have clicked “OK”, or after 120 seconds, the next round will 

begin.  The rules are the same in all rounds. 

 

The questionnaire 

At the end of the experiment, we will ask that you fill out a questionnaire.  The personal 

information collected in the questionnaire will be treated with the strictest 

confidentiality, and will be used only for research purposes. 

 

Final payment 

After the experiment, you will be paid, in euros, the value of the points you earned 

during the experiment.  Each point is worth one half of a cent, that is, 200 points are 

equivalent to €1. 

 

Practice quiz 

In order to make sure that all participants understand the rules of the experiment, we 

now ask that you complete a short practice exercise.  The practice questions will appear 

shortly on your computer screen.  When all participants have correctly finished all the 

practice questions, the first round of the experiment will begin. 

 

Please raise your hand to ask a question if you have any doubts about the rules of the 

experiment or if you have trouble with any of the practice questions. 



Appendix B: Simulation details

For numerical and experimental purposes, we assumed that the distributions
G(Θ) and F (x|Θ) place positive probability only on a discrete grid; let g(Θ) be
the probabilities associated with the grid points of the aggregate state. For a
given state Θ, if the first player uses strategy y, then she will attack (implying

η1 = α1 = 1) with probability
∫ θ̄+ε
θ−ε y(0, 0, x)dF (x|Θ). Starting here, we can

calculate the probability of any fraction of attackers αi up to and including
individual i, conditional on some aggregate state Θ:

P̂i(α|Θ, y) ≡ prob(αi = α|i, Θ, y) for any α ∈ Ji

These probabilities can be calculated recursively, using the functions Ti:

prob(αi = α|i, Θ, y) = prob
(
αi−1 =

iα

i− 1
|i− 1, Θ, y

) [
1− Ti

(
iα

i− 1
, Θ, y

)]

+ prob
(
αi−1 =

iα− 1

i− 1
|i− 1, Θ, y

)
Ti

(
iα− 1

i− 1
, Θ, y

)

Next we can easily calculate the joint probability

prob(αi−1, Θ, i, n, m|y) =

prob(αi−1|i− 1, Θ, y)prob(i)prob(n|i)prob(m|n, αi−1, i)prob(Θ)

This is the joint probability that the player is the ith in the sequence, that
the state is Θ, that the fraction of predecessors attacking is αi−1, and that she
observes n predecessors, of whom m attacked, given that all other agents are
playing strategy y. All the probabilities in this product are known from our de-
scription of the model: prob(i) = 1/I, prob(n|i) = Ni(n), prob(m|n, αi−1, i) =
Mi(m|n, αi−1), and prob(Θ) = g(Θ).

Now if trader i plays ηi = 1, then αi = ((i− 1)αi−1 + 1)/i ∈ {1
i
, 2

i
, . . . , 1}.

Thus for αi = ((i− 1)αi−1 + 1)/i, we have

prob(αi, Θ, i, n, m|y, ηi = 1) = prob(αi−1, Θ, i, n,m|y)

From here, we go on updating, assuming that other agents play strategy
y, to calculate probability distributions over αj for j > i. In the end, we need
the probabilities over αI , the aggregate fraction attacking; in particular, we
must know

prob(αI , Θ, i, n,m|y, ηi = 1)

which is the joint probability of the event in which the aggregate outcome is
(αI , Θ), the player is the ith individual, and the player observes n predecessors
of whom m attack, given that others play strategy y and the individual plays
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ηi = 1. This can be calculated by updating with Ti, as we did before. For any
j > i and αj ∈ {1

j
, 2

j
, . . . , 1},

prob(αj, Θ, i, n,m|y, ηi = 1) = prob
(
αj−1 =

iαj

i− 1
, Θ, i, n,m|y, ηi = 1

) [
1− Tj

(
iαj

i− 1
, Θ, y

)]

+ prob
(
αj−1 =

iαj − 1

i− 1
, Θ, i, n, m|y, ηi = 1

)
Tj

(
iαj − 1

i− 1
, Θ, y

)

Next, for any signal x, we can multiply by prob(x|Θ) to calculate

prob(αI , Θ, i, n, m, x|y, ηi = 1)

which is the player’s distribution over the aggregate outcome conditional on
his information set and his action (we only need this information for the case
ηi = 1, since if ηi = 0 then the payoff is zero regardless of the aggregate
outcome). This, at last, is the probability that enters into formula (10) from
which we calculate the conditional probability Π(αI , Θ|n,m, x, ηi = 1, y) that
the player must know in order to choose his optimal strategy.

Plugging this probability Π in to either the rational first-order condition (5)
or the logit choice equation (14) for some given λ, we obtain the best response
(or logit response) to the strategy y. That is, we have calculated the best or
logit response y′ = By or y′ = Bλy. We iterate on the mapping B or Bλ until
the average absolute change in y across all information sets y(n,m, x) is less
than 10−7.

Appendix C: Proof of Proposition 2

Proof.
We start by considering the rational herding equilibrium case λ = 0, in

which case doubly monotonic strategies are double threshold strategies.
Pick γ ∈ (0, 0.5) and a small δ > 0. For any equilibrium, define

θ∗ ≡ inf{θ : α∞ < a(θ) with probability > γ}
θ∗ ≡ sup{θ : α∞ ≥ a(θ) with probability > γ}

Thus θ∗ is the lowest aggregate state such that there is not a successful attack
with at least probability γ, while θ∗ is the highest aggregate state such that
there is a successful attack with at least probability γ.

Note that if there are sometimes multiple outcomes, then θ∗ ≤ θ∗. On
the other hand, if there is a unique outcome for all θ (that is, if α∞(θ) is a
well-defined function of θ, rather than a correspondence) then θ∗ = θ∗ ≡ θ0,
and α∞(θ0) = a(θ0) ≡ α0. Let us assume that there is a unique outcome for
all θ, and try to show a contradiction.
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Equation (8) shows that if i and n are large, then Mi(m|n, α) ≡ prob(mi =
m|i, ni, α) goes very quickly to zero for any mi not approximately equal to
αn. Moreover, when Nmax is large, most players will observe large samples
of previous actions (since q is fixed). On the other hand, f(x|θ) is fixed,
independent of Nmax. Therefore, we can pick Nmax large enough so that
receiving a signal x far from its mean, θ, is vastly more probable than receiving
a sample mi/ni far from its mean αi−1.

Now, when I = ∞, Assumption 1 guarantees that there are just two con-
ceivable configurations: (a) θm ≤ θ0 ≤ θm and (b) θm < θm ≤ θ0. We begin
by considering case (a).

Consider a player who observes a large sample of previous actions ni, with
mi

ni
≥ α0+δ and xi = θ0+ε−δ. Since mi

ni
is overwhelmingly likely to be close to

its mean for sufficiently large ni, such a player (knowing that in equilibrium, the
outcome α∞(θ) is a well-defined, single-valued function of the aggregate state
θ) should conclude that the true state is a θ slightly less than θ0. Therefore
he should conclude that a successful attack is occurring, and since θ0 < θm, he
should also conclude that it is profitable to join a successful attack.

On the other hand, if xi were just slightly higher (xi = θ0 + ε + δ), he
should conclude that θ > θ0, implying that a successful attack is impossible,
and therefore that attacking is undesirable. Therefore, when ni is large, and
m/n ≥ α0 + δ, the optimal threshold is τ(m,n) ≈ θ0 + ε.

Similarly, a player who observes many previous actions, with mi

ni
≥ α0 − δ

and xi ≈ θ0 − ε, will conclude that he is observing an unsuccessful attack if
xi is slightly greater than θ − ε, but that he is observing a successful attack if
xi is slightly less than ε; therefore the optimal threshold when ni is large and
m/n ≥ α0 − δ is τ(m,n) ≈ θ0 − ε.

Therefore, consider what happens when the true underlying state is θ0. For
sufficiently large Nmax, we have T (α0 − δ, θ0, τ) ≈ 0: if the fraction of initial
players attacking prior to i is less than or equal to α0 − δ, then player i’s
threshold is extremely likely to be τ(m,n) ≈ θ0 − ε, so his signal is extremely
likely to exceed his threshold, so his probability of attacking will be roughly 0.

Likewise, T (α0 + δ, θ0, τ) ≈ 1: if the fraction of previous players attacking
is at least α0 + δ, then player player i’s threshold is extremely likely to be
τ(m,n) ≈ θ0 + ε, so his signal is extremely likely to fall below his threshold,
so his probability of attacking will be roughly 1.

Therefore, T (α, θ0, τ) crosses the 45o line in an upward direction at α ≈ α0.
By continuity, there exists an interval around θ0 where T has multiple crossings.
But this means multiple outcomes are possible in an interval around θ0, which
contradicts our initial assumption.

Moreover, at θ0, all the initial signals can be arbitrarily close to θ0 + ε, or
arbitrarily close to θ0 − ε, with positive probability. Since we have assumed
that outcomes are unique, any player who observes no previous choices should
choose a threshold near θ0, because she knows that the eventual outcome will
be a successful attack if θ < θ0, while attacks will be unsuccessful if θ > θ0.
Players with a small but nonzero sample have a similar incentive, but they
also have an incentive to follow previously observed actions.
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Thus if the first signals are sufficiently close to θ0 + ε, no initial players
should attack. Analogously, if the first signals are sufficiently close to θ0 − ε,
all initial players should attack. Therefore there is positive probability of
an arbitrarily large number of initial attacks; or an arbitrarily large number
of initial nonattacks. Thereafter, the shape of the T function for large n
comes into play, so that the outcome may converge to either of the crossings
of T (α, θ0, τ) with positive probability. This contradicts the hypothesis that
outcomes are unique in case (a).

We must still consider case (b), in which θm < θm ≤ θ0. If this configuration
holds, it means successful attacks occur in equilibrium for all θ between θ and
θ0, but that when θ ∈ (θm, θ0), the attackers are making a mistake: for these
θ, attacking is undesirable because R(θ) < t. Now define αm ≡ α∞(θm). It
is straightforward to show, with arguments like those used above, that in this
case, a player observing many ni and mi

ni
≈ αm + δ will choose a threshold

τ(m,n) ≈ θm + ε, while a player observing many ni and mi

ni
≈ αm − δ will

choose a threshold τ(m, n) ≈ θm − ε. Following our previous arguments, we
can conclude that T (α, θ0, τ) crosses the 45o line from below near αm, and
that its upper and lower stable crossings are both outcomes that occur with
positive probability. Again, this contradicts our initial assumption of unique
outcomes.

A doubly monotonic logit herding strategy with λ strictly positive but still
sufficiently close to zero is arbitrarily close to a double threshold strategy. The
arguments used in this proof still hold for this case.

QED.
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